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Thispaper providesthefirst investigation of the hedging effectivenessof the
FTSE 100 and FTSE Mid 250 stock index futures contracts using hedge ratios
generated within an extended mean Gini framework. This framework provides
a robust alternative to the standard minimum variance approach, by
distinguishing between different classes of risk aversion and producing hedge
ratios that are consistent with the rules of stochastic dominance. The results
show that the appropriate hedge ratio varies considerably with the investor’'s
degree of risk aversion and that the EM G approach is capable of being utilized
by all classes of risk averse investors, in contrast to the standard minimum
variance approach. In addition, the results show strong evidence of a duration
effect and support the use of the extended mean Gini approach when cross
hedges are involved (JEL: G10).
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|. Introduction

Traditionally, the futures hedging literature has focused on the
minimum variance (MV) approach of Stein (1961) and Johnson (1960),
as extended by Benninga et al (1983), Lence (1995) and Rao (2000)
among others. However, it is now well recognized that mean variance
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analysisis based on rather restrictive assumptions. In response to this,
the extended mean Gini (EMG) approach has been proposed as an
alternative framework for analyzing hedging decisions. This approach
offers greater flexibility in determining the optimal hedge ratio by
allowing for differentiated risk aversion, as well as being consistent
with the rules of stochastic dominance.

The use of the EMG approach to hedging is particularly relevant,
given that it stresses the avoidance of downside risk. Hedging to avoid
downside risk is one of the principal uses of index futures, through
techniques such as portfolio insurance. The EMG approach has been
used for investigating hedging effectiveness for a range of contracts
including currency, commodity and US stock index futures. However,
while U.K. stock index futures hedging has been investigated with
respect totheMV approach (see Holmes[1995, 1996], Butterworth and
Holmes[2000, 2001]), asyet there has been no investigation of hedging
effectiveness for these contracts using the EMG approach. This is,
perhaps, surprising given the importance of the U.K. marketsin terms
of the volume and value of trade and its international profile and is a
major shortcoming.! The EMG approach has the significant advantage
that it can be used for all classes of risk averseinvestors. Thus, it is of
particular use to professionally managed funds which typically have
various clienteles with different degrees of risk aversion. In addition,
previouswork investigating hedging with U.K. stock index futures has
not examined the effectiveness for hedge durations ranging from one
day to one month.

This paper seeksto address some of the shortcomings by examining
the hedging effectiveness of U.K. stock index futures contracts for
hedge durations of one day, one week and four weeks using the EMG
approach. By comparing such results with those found using the MV
hedge ratio, guidance is provided to investors on the most appropriate
hedging strategies to adopt, taking account of their degree of risk
aversion. The remainder of this paper isstructured asfollows. The next

1. The London Stock Exchange (LSE) is the world's most international equities
exchangein termsof thelevel of trading, provides Europe’ slargest pool of capital and isthe
leading provider of equity market servicesin the European timezone. In addition, it islinked
by partnershipstointernational exchangesin Asiaand Africa. Theinternational significance
of the L SE is attested to by the fact that the value of international listings as at 31 December
2002 was in excess of £1900 billion and the fact that the LSE lists more international
companies than the NY SE and the Tokyo stock exchange combined (see LSE web page
(www.londonstockexchange.com) for further details).
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section considers theoretical issues, reviews previous literature and
identifies the research issues. Data and methodological issues relating
to the empirical investigation are discussed in section I1l. Section IV
reports the key empirical findings, with conclusions being drawn in
section V.

[1. Theoretical Development, Past Studiesand Resear ch | ssues

A. Theoretical development

The mean-Gini (MG) approach in finance has proved to be a useful
aternative to MV modeling, since it makes no specific assumptions
about thenormality of theunderlying probability distribution of returns,
theform of the utility function or the unbiasedness of futuresprices, and
allows for the construction of efficient portfolios that are included in
first and second order stochastic dominance portfolios. Hence, the MG
coefficient provides aconsistent ranking of risky alternativeswhenever
MV analysis fails.? The MG coefficient (equation 1) is equal to twice
the covariance between return realizations of the variable R and its
cumulative probability distribution (F(R)). As Shalit and Yitzhaki
(1989) paint out, this representation of the Gini mirrors the variance,
apart from the fact that the cumulative probability distribution is used
rather than the return itself.

Ir'=2cov(R F(R)) @

However, MG analysis assumes that thereis only a single category
of risk averse investors, while in reality there are a multitude of risk
averse investors.

A framework which is capable of capturing this phenomenon while

2. Theoriginal version of theMYV approach (seeJohnson[1960], Stein[1961]) assumes
infiniterisk aversion. Subsequent work hasextended therelevancetoall classesof risk averse
hedgers by assuming unbiased futures prices (seg, for example, Benningaet al [1983], Lence
[1995], Neuberger [1999] and Rao [2000]). However, such extensions require a more
complicated estimation technique and the extent to which this is worthwhile has been
questioned (see, for example, Baillieand Myers(1991)). Moreimportantly, thereis evidence
that futures prices may be biased (see, for example, Antoniou and Holmes (1996) for the
U.K.).
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retaining the desirable properties of the MG approach is the EMG
family of coefficients. The MG coefficient can be subsumed into this
wider family of statistics, enabling researchersto take into account the
strength of theinvestor’ sdegreeof risk aversion and explicitly allow for
thefact that risk averseinvestorsarelargely concerned only with * down
side’ risk.> The EMG coefficient, proposed by Yitzhaki (1983), can
distinguish between different classesof investorsby incorporatingarisk
aversion parameter (v) which takes account of the impact of risk
aversion on portfolio evaluation decisions. The EMG coefficient is
defined as:

r(v)=E(R)-a-[[1-F(R)] R @

visthe power coefficient which reflectsthe degree of risk aversion, and
providesthelink betweenthe EM G coefficient (I" (v)) andtheinvestor’s
attitude towards risk. For practical purposes (I'( v)) takesthefollowing
form.*

r(v)=-vcov(R (1-F(R))") 3)

As v increases more emphasis is placed on the lower end of the
distribution and attention is focused on the worst outcomes. This is
intuitively appealing because a risk averse investor will attach most
importance to the probability of incurring the worst redlization. By
assuming different values of the EMG risk aversion parameter v, it is
possibleto construct avariety of efficient portfolio setsin EM G space.
While these EMG portfolios are similar in construction to MV
portfolios, they have substantial advantages, in that they are encom-
passed in the second order stochastic dominance efficient set.”
Previous studies consider the impact which changes in the risk

3. AsHanoch and Levy (1969) argue“ Theidentification of riskinesswith variance, or
with any other single measure of dispersion, is clearly unsound. There are many obvious
cases, where more dispersion isdesirable, if accompanied by an upward shift in the location
of thedistribution, or by an increasing positive asymmetry” (p. 344).

4. Notethat theM G coefficient issubsumed withinthisclass, sincewhenv =2 equation
3isequivalent to equation 1.

5. For adiscussion of the basic statistical properties of the EMG coefficient, and its
relationship to stochastic dominance and portfolio risk, see'Yitzhaki (1982, 1983) and Shalit
and Yitzhaki (1984).
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aversion parameter (v) have on hedging behavior. However, to date,
none have attempted to provide ameaningful or intuitive interpretation
of risk aversion within the EMG framework, by quantifying the
significance of differences in the risk aversion parameter from the
practical perspective of arisk averseinvestor. Theimpact of increasing
risk aversion on portfolio return weightings is illustrated as portfolio
concentration functions for arange of risk averse investorsin figure 1.
The curves illustrate the cumulative portfolio weight which different
categoriesof risk averseinvestorsattach to theworst realizationswithin
thesample. Figure Lillustratesthefunctionsfor arange of risk aversion
parameterswithinthelimits1to 200. Wheretherisk aversion parameter
is 1, the investor is ‘risk neutral’ and adopts a uniform weighting
strategy, with all return realizations weighted equally. Hence, the
investor is assumed to attach the same importance to the worst 50% of
observations in the distribution as they do to the most favorable 50%.°
In the case of risk averse investors, the EMG approach assumes that
greater attention is attached to the worst outcomes. Astherisk aversion
parameter (v) rises, the associated portfolio concentration function
becomes increasingly concave since the investor attachesincreasingly
greater weight to an increasingly smaller sub-sample of observations.
Within the EMG framework, figure 1 shows that in the case of a
weakly risk averse investor (where v = 2; MG approach), the investor
attaches 2.1% of the total portfolio weight to the worst 1% of portfolio
return realizations and 75% of the total portfolio weight to the worst
50% of portfolio return realizations ;moderately risk averse investor
(wherev=10), theinvestor attaches 9.3% of thetotal portfolioweight to
the worst 1% of portfolio return realizations and 99% of the total
portfolio weight to the worst 50% of portfolio return realizations;
strongly risk averseinvestor (wherev=50), theinvestor attaches 38% of
thetotal portfolioweight to theworst 1% of portfolio returnrealizations
and 99% of the total portfolio weight to the worst 10% of portfolio
return realizations; highly risk averse investor (where v=200), the
investor attaches 86% of the total portfolio weight to the worst 1% of

6. The uniform weighting strategy adopted by arisk neutral investor within an EMG
framework is similar to that adopted by the investor operating within a standard MV
framework, with theworst return realization being given the same portfolio weighting asthe
best return realization. Clearly such an approach seems at odds with investment behavior in
practice.
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FIGURE 1.— Impact of Risk Aversion on Portfolio Return Weightings

Note: The horizontal axis represents the portfolio returns which are ranked in terms of their
size, withthefirst return in the ranked sampl e constituting the smallest return (most negative
return), and thefinal returnin theranked sample constituting thelargest return (most positive
return). The vertical axis represents the cumulative weight attached to the various sub-
samples of the distribution. The portfolio concentration curves relate to risk aversion
parameters (v) equal to 1, 2, 3, 5, 10, 25, 50, 100, 150 and 200.

portfolio return realizations and 99% of thetotal portfolio weight to the
worst 2% of portfolio return realizations.

At the limit, as v~ the portfolio concentration function would
converge to the north-west corner of figure 1, and the investor would
attach the total portfolio weight to the worst return realization. Thus, it
is evident that the EM G approach has the advantage that it can be used
to determine hedging strategiesfor awiderangeof risk averseinvestors.

B. Literature review and research issues

The EMG framework has been applied to the analysis of portfolio
selection (Bey and Howe [1984] and Shalit and Yitzhaki [1989]), asset
pricing (Carroll, Thistle and Wei [1992]) and the estimation of
systematic risk (Gregory-Allen and Shalit [1999]). It hasal so been used
for analyzing hedging. This section provides a brief review of work
which used the MG and EMG approaches to investigate hedging
performance for arange of futures contracts.” Cheung, Kwan and Yip

7. For examples of where the Johnson (1960) approach has been used in the analysis
of stock index futures hedging see Figlewski (1984), Junkus and Lee (1985), Graham and
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(CKY [1990]) investigate hedging effectiveness of futures and option
contracts in both aMV and MG framework on a daily basis over the
period September 1983 to December 1984 for five currency contracts.
They find that usingthe MV framework resultsin the sel ection of hedge
portfoliosthat are sometimesdominated stochastically by an alternative,
in contrast to the MG approach. CKY find that futures are more
effective than options at hedging in both the MG and MV frameworks,
with futures reducing cash market risk by more than 55%.

Hodgson and Okunev (1992) extend CKY'’s (1990) analysis by
employing EM G coefficients. Using abasket of sharesinthe Australian
All Ordinaries Index and All Ordinariesfutures contractsfor the period
July 1985 to September 1986 they compare the hedging effectiveness
of MV and EMG approaches. At low levels of risk aversion, hedge
ratios generated by the EM G and MV HR approachesare similar, but at
moderate-to-high levels of risk aversion EMG hedge ratios are
significantly different from MVHRs. Daily MVHR and EMG hedge
ratios are computed for awide range of the risk aversion parameter by
Kolband Okunev (1992), for avariety of futures contractsincluding the
S& P 500 index contract for January — December 1989. Results are
generally consistent with those of Hodgson and Okunev (1992). Kolb
and Okunev (1993) compare the performance of risk minimizing and
utility maximizing hedgesinan EM G framework. Usingmonthly Cocoa
prices for Ghana, Nigeria, Brazil and the Ivory Coast over the period
1952-1976, results suggest that at very low levels of risk aversion, risk
minimizing and utility maximizing hedge ratios differ substantially.
Indeed, the utility maximizing hedge ratio is characterized by reverse
hedging (or speculative) behavior. At higher levels of risk aversion the
risk minimizing and utility maximizing hedge ratios converge.

Lien and Luo (1993) use a non-parametric estimation procedure to
estimate EM G hedge ratios, using weekly S& P 500 data (1984—-1988).
They find the optimal hedge ratio decreases as risk aversion increases.
They also find that while at low levels of risk aversion hedge ratios are
stable, at higher levelsof risk aversion hedgeratiosare characterized by

Jennings (1987), Malliaris and Urrutia (1991), Lindahl (1992), Holmes (1996) and
Butterworth and Holmes (2000). In addition, the MV approach has been used to examine
hedging effectiveness for other asset types such as currency futures (see, for example,
Malliarisand Urrutia[ 1991] and Demaskey [1997]). The mean-varianceframework hasalso
been employed to investigate international home bias in the presence of foreign exchange
hedging (see Gorman and Jorgensen [ 2002] ) and the construction of optimal portfoliosof real
assets (including stock indexes) and currency futures used to hedge exchange rate risk (see
Adcock [2003]).
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a“widely swung step function” of the data windows.

Finally, Shalit (1995) combines normality testing of futures prices
and the Hausman specification test to establish astatistical methodology
for comparing hedge ratios generated within the EMG and MV
frameworks. A range of metal futures contracts traded on the NY
Commodity Exchange between 1977 and 1990 areexamined. For all the
contracts considered, Shalit findsthat when contracts are normally (not
normally) distributed, the probability of the two approaches exhibiting
equal (unequal) hedge ratios is 70% (61%).

Theliterature review demonstratesthat the EM G approach provides
a robust alternative to the MV approach for investigating hedging
effectiveness. By explicitly incorporating investor risk aversion into
hedging decisions, it can be used to generate a broad range of hedge
ratios applicable to a diverse range of investors. However, to date no
examination has been undertaken of EMG hedging effectiveness with
stock index futures for either cross hedges or hedges of different
duration. It isof interest to determine whether the * step function’ found
to characterize therel ationshi p between the optimal hedge ratio and the
level of risk aversion for a direct hedge also applies when the cash
portfolio differs in composition to the index underlying the futures.
Furthermore, while previous studies used different durations to
investigate hedging effectiveness using the EM G approach, none have
investigated theimpact of changesin duration on hedging performance.
Inaddition, andimportantly, the EM G approach hasnot previously been
applied to U.K. stock index futures. Finally, while previous tests have
examined stock index futures, these tests relate to the early years of
trading in index futures and there is no recent analysis of index futures
during a period when the market iswell established.

To address these shortcomings this paper compares the hedging
performance of the FTSE 100 and FTSE Mid250 contracts using an
EMG andaMV approach. Specifically; the performance of hedgeratios
generated using an EM G framework is examined for the FT SE 100 and
Mid250 contracts traded in the U.K. Consideration is given not only to
direct hedges, but also to arange of cross hedges with cash portfolios
comprising of related market indexes. Thisis an important issue since
cross hedges have been found to be riskier than direct hedges, and it is
reasonable to expect them to be more sensitive to changes in risk
aversion. Furthermore, since the Mid250 contract was only introduced
in 1994, it will be interesting to examine its effectiveness compared to
themoreestablished FTSE100 contract (introduced 1984). The hedging
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performance of the EM G approach isconsidered for hedgesof different
duration, since shorter duration hedges arethought to be associated with
higher levels of basis risk, making them less attractive to risk averse
investors. The effectiveness of the EMG hedge ratio is compared with
theex post MVHR. Asthe MV strategy isoften used asabenchmark in
theliterature, insightsshould be provided asto whether the MV strategy
warrants such a prominent position.

[11. Data And M ethodol ogy
A. Data

Hedging effectivenessisexamined for the FT SE 100 and Mid250 index
futures traded on LIFFE, using cash and futures data for the period
February 1994 (the introduction date of the Mid250 contract) to
February 1999. The contract closest to maturity is used and is
rolled-over at expiration. Cash portfolios to be hedged are represented
by thefollowing indexes: FTSE 100, FTSE Mid250, FTSE 350, FT All
Share (FTALLSH) and FT Investment Trust (FTIT).2 These stock
indexes capture a variety of investor activity, and it is of interest to
determine whether the market risk of these indexes can be reduced by
using index futures. Hedging effectivenessis investigated using daily,
one week and four week duration hedges. The return series are
calculated as the logarithmic price change, with 1264, 260 and 65
observations respectively. All datais obtained from Datastream.

B. Methodology

EMG and MV approachesto hedging seek to determine the hedgeratio
which minimizes the risk associated with the cash portfolio, with risk
measured in terms of the extended Gini coefficient and standard
deviation respectively. The return on the hedged portfolio (R,) is
expressed as:

8. The FTSE 100 index represents the largest 100 companies traded on the London
Stock Exchangeand the FT SE Mid250 index representsthe next 250 companies (i.e. numbers
101 to 350 by market capitalization). Taken together these indexes constitute the FTSE 350
index, which coversover 90% of the U.K. equity market by market capitalization. The FT All
Shareencapsul atesthe FTSE 350 index and the FT SE Small Cap index, whilethe FTIT covers
al of the investment trust funds trading on the London Stock Exchange.
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R=R+hR 4

R, isthe cash portfolio return, Riisthe futures return and h isthe hedge
ratio. The hedge ratio which minimizesthe EM G coefficient (W¥¢) can
be determined by substituting the return on the hedged portfolio
(equation 4) into the EM G coefficient (equation 3):

1“(v)=—vcov(RS+hE“"GRf (1-F (Rn))v_l) (5)

By expanding equation 5 with respect to the different el ements of the
hedged portfolio, and differentiating with respect to h®¢, and then
setting the partial derivative to zero, the global minimum EMG hedge
ratio can be expressed as:

—Cov(Rf (1-F (Rh))“)

dcov(R,,(1-F(R,)")
ahEMG

hEMG —

(6)

It is clear from (6) that the hedge ratio that minimizes the EMG
coefficient is a direct function of the risk aversion parameter v. Thus,
different categories of risk averse investors are likely to have different
optimal hedgeratios.® To estimate (6) theiterative approach adopted by
Hodgson and Okunev (1992) is employed. The hedge ratios that
minimize the EMG coefficients are determined for each of the cash
portfolios, using risk aversion parameters ranging from 2 to 200, at
increments of one.* Following Johnson (1960), the ex post MVHR is
computed as follows:

9. Inthe case of the risk neutral investor, the risk aversion parameter is equal to 1,
hence as equation 6 collapsesto zero, the return on the hedged portfolioin equation 4 equates
to the return on the cash portfolio only.

10. Ascan be seenin figure 1, by employing risk aversion parameters within the range
2 to 200, the impact of risk aversion on hedge generation is examined for the full gamut of
risk averse investors.
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_cov(R,R)

hMV —
var (R,

(7)

Traditionally, theex post hedgeratio (W) isestimated by regressing
the cash position returns against the futures position returns (see
Figlewski [1984]). More recently the limitations of the ordinary least
squares (OL S) approach have been recognized and alternative methods
for estimating hM¥ have been suggested. Two issues have received most
attention. First, OL S assumes that the conditional covariance matrix is
constant through time. In practice thismay not bethe case. To allow for
timevariation and the presence of heteroskedasticity, someauthorshave
adopted a generalized auto-regressive heteroskedasticity (GARCH)
framework for estimatingthe MV HR (see, for example, Holmes[1996],
Myers [2000] and Dawson, Tiffin and White [2000]).

Second, acointegrating rel ationship may exist between the cash and
futures market price series. Failure to recognize this relationship may
lead to a sub-optimal hedge. Hence, several studies have accounted for
cointegration in their estimations (for example, Ghosh [1993], Holmes
[1996], Lien [1996], Dawson, Tiffin and White [2000] and Sim and
Zurbruegg [2001]). Given these potentia problems with OLS
estimation, this paper will test firstly for ARCH effectsand secondly for
unit roots. Where such effects are evident aternative estimating
techniques will be used to take the effects into account.*

In assessing hedging effectiveness, consideration will be given to
both mean returns and the degree of risk reduction. The percentage risk
reduction achieved from hedging each of the cash indexes within the
EMG and MV frameworks respectively is calcul ated as':

Risk _(1 EMG (or S.D.)of hegded returns

T =1 x100(8)
Reduction % EMG (or S.D.)of unhedged returns

11. In practice, there may well be strong groundsfor believing that ARCH effects exist.
However, given the use of return series, it may well be expected that no unit roots are evident.

12. For the purposes of comparing risk across the two approaches, Shalit (1995) points
out that only where the futures prices are normally distributed will the EMG hedge ratios
converge to the MV hedge ratios, and at that point the EMG coefficients are equal to the
standard deviation of returns divided by a constant.



142 Multinational Finance Journal

TABLE 1. Isthereevidence of ARCH effects?

Hedged Portfolio Daily hedges Weekly hedges Monthly hedges
A. FTSE 100 Contract
FTSE100 index Yes Yes No
FTSE Mid250 index Yes Yes No
FTSE 350 index Yes No No
FTSE All Share Index Yes No No
FTSE IT Index Yes No No
B. FTSE Mid250 Contract
FTSE100 index Yes Yes No
FTSE Mid250 index Yes No Yes
FTSE 350 index Yes Yes No
FTSE All Share Index Yes Yes No
FTSE IT Index Yes No No

Note: Based on ARCH test of residuals using the Lagrange Multiplier Test at the 5%
level.

V. Empirical Results

This section reports results relating to the hedging performance of the
FTSE 100 and Mid250 contracts using EMG and MV approaches.
However, it isnecessary to first consider whether an alternativeto OLS
isrequired for estimating the MVHR. To test for ARCH effects, OLS
estimation was undertaken for all hedges considered and an ARCH test
of residuals was performed using the Lagrange Multiplier test. Table 1
reports findings relating to the presence of ARCH effects at the 5%
level. The table shows evidence of ARCH effects for al daily, half of
the weekly and one monthly series. Where ARCH effects exist, the
MVHR isestimated using both OL S and GARCH (1,1). The estimated
hedge ratios using the constant conditional covariance matrix and
GARCH areextremely similar. In no caseisthe difference greater than
0.08. Similarly, differences in hedging effectiveness are extremely
small, in line with previous studies (see, for example, Holmes [1996],
Myers [2000] and Dawson, Tiffin and White [2000]). In all cases the
MVHR estimated using OL S leads to greater risk reduction, consistent
with the findings of Holmes (1996) for the U.K."2

Next, univariate tests for unit roots in the return series are

13. Theresultsrelating to GARCH estimation are avail ablefrom the authors on request.
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undertaken. Thetests suggest thereare no unit roots, asexpected ™ This
is consistent with the findings of, for example, Dawson, Tiffin and
White (2000). It is also worth noting that Holmes (1996) finds that
hedgeratios estimated by OL S provide greater risk reduction than error
correction mechanism based estimations for the U.K.

In the light of the above and the current paper’ s focus on the EMG,
the MVHRs reported are those estimated by OLS.* Results for daily,
one week and four week hedges are reported in tables 2, 3 and 4
respectively, and depicted in figure 2. All tables are organized in the
same way, consisting of two panels, panel A reports the summary
statistics for hedges using the FTSE 100 contract, and panel B reports
the summary statistics for hedges using the Mid250 contract. Within
each panel results are reported for each of the cash portfolios. The size
of the hedge ratio, the level of risk reduction, the mean returns and a
relative returns statistic are reported.*®” Given the voluminous results,
those relating to only a selection of risk aversion parameters are
presented.'®

Results reported in table 2 panel A relate to hedging with the FTSE
100 contract using daily duration hedges. For the direct hedge, at low
levelsof risk aversion (v=2tov=10), theEMG and MV hedgeratiosare
similar, 0.83-0.84 and 0.83 respectively. At higher levels of risk
aversion (v=200) the EMG hedge ratio deviates markedly from the
MVHR, with values of 0.73 and 0.83 respectively Focusing on the
risk-return relationship, the MV approach removes 70% of the risk of
the underlying cash index, compared to 70.9% for the MG strategy

14. Details of the unit root tests are available from the authors on reguest.

15. It should also be noted that ARCH effects or cointegration will impact on diagnostic
statistics, but that the OL S estimate remains consi stent in the presence of these effects. Given
that tests using diagnostic statistics are not undertaken here, the OL S estimates can be used
with confidence.

16. All meanreturnsreported in thetables and text have been annualizedto allow amore
convenient comparison between hedges of different duration.

17. The relative returns statistic compares mean returns achieved using the EMG
approach to those achieved using the MV approach. It measures the percentage reduction or
increase of the MV hedged returns achieved by the EMG hedge.

18. The EMG hedging resultsrelating to the other risk aversion parametersare available
from the authors on request.
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when v=2." However, the MG strategy is associated with hedged
returns 6% lower than the MV approach. Asv increases, risk reduction
fallsand mean returnsrise. For values of v >10 mean returns are greater
than for the MV hedge. Indeed, for a highly risk averse investor (v
=200), the EMG strategy provides amean return 59.5% higher than the
MYV strategy, while eliminating 62% of risk.

For thedirect hedge using the Mid250 futures (table 2, panel B), risk
reductionissignificant within both frameworks. However, thelevelsare
substantially less than those achieved for the FTSE 100. The lower
levels of risk reduction (typically within the range 10-20%) are
consistent across both hedging strategies and all values of v. This
difference is probably due to the Mid250 contract being thinly traded
compared to the FTSE 100, and the Mid250 has a large number of
constituentswhich areinfrequently traded. Thisresultsin greater basis
risk for the Mid250 futures. Hence, the release of news of a pervasive
systematic nature may be incorporated more rapidly into the FTSE 100
cash and futures prices, than in the Mid250 sector of the market.

Furthermore, the Mid250 direct hedge is characterized by asimilar
relationship asthe FTSE100, with MVHR and EM G hedgeratiosbeing
similar at low levels of risk aversion, but considerably different at
higher levels. However, there is some divergence even for low values
of vfor theMid250 contract. Therefore, whilethe MV approachismore
appropriate for the case of weakly risk averse investors, there are some
differences at low levels of v and the MV strategy is clearly
inappropriate for highly risk averse investors, especially those wishing
to undertake a short duration hedge.

Considering cross hedges, table 2, panel A reports the daily results
associated with the FTSE 100 contract. While the risk reduction is not
as great as the direct hedge it is still considerable, with similar risk
reduction achieved for both weakly and highly risk averse investors
using the EMG. For the Mid250, FTSE 350, FTALLSH and FTIT
indexes the risk reduction achieved by aweakly risk averse investor: v
=2 (highly risk averse investor: (v=200), is 26.3% (28.4%),68.9%
(62.1%), 67.9% (61.6%) and 34.8% (42.0%) respectively. For the
Mid250 contract, table 2, panel B showsdaily cross hedging resultsfor

19. While the risk reduction potential of the MV and EMG approaches are not strictly
comparable, given that the reduction in the dispersion of returnsis measured by changesin
the standard deviation and the EMG coefficient respectively, nonetheless considering the
differences provides useful insights into the differences in hedging behavior within the two
approaches.
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A. FTSE 100 Contract
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FIGURE 2—
Extended Mean Gini Hedge Ratios: FTSE 100 and FTSE Mid250 Contracts

(Continued)
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B. FTSE Mid250 Contract
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FIGURE 2—(Continued)

Note: The plots show EMG hedge ratios as a function of the risk aversion parameters
for hedges of four week, one week and daily duration. Wherethe daily seriesis represented
by the bold black function, the one week seriesis represented by the dark grey function and
the four week seriesis represented by the light grey function.
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the FTSE 100, FTSE 350, FTALLSH and FTIT indexes. It is apparent
that the FT SE 100 contract producesthe most effective resultsfor those
indexesdominated by large capitalization stocks (FT SE 100, FT SE 350
and FTALLSH) in terms of risk reduction. In contrast, the Mid250
contract providesthe most effective hedgesfor thoseindexesdominated
by smaller capitalization stocks (Mid250 and FTIT). This suggests that
while the more recently introduced Mid250 contract is not as effective
as the more established FTSE 100 contract at direct hedging on adaily
basis, it nonetheless, performs a useful function in terms of being a
more effective hedging instrument for some portfolios. This finding
holds for both the MV and EMG approaches. Again, the results show
differences in the hedge ratios estimated using the MV and EMG
approaches.

Figure 2 illustrates how the EM G hedge ratio changes for different
levelsof v. Itisclear that thedaily hedgeratio seriesis characterized by
a‘step function’, whereby all hedged portfolios are associated with a
number of distinct ratios. AsHodgson and Okunev (1992) point out, the
practical implication of thisisthat it isnot always necessary to precisely
measure an investor’ sdegree of risk aversion to determinewhich hedge
ratio most appropriately meets their preferences. Rather, the investor
has only to choose between a range of different risk categories.
Therefore, the EM G approach offers arange of hedge ratios which suit
the requirements of different categories of risk averse investors.

The article now considers the issue of aduration effect. Examining
results for the FTSE 100 contract in panel A of tables2, 3and 4, itis
possibleto seetheimpact on hedging effectivenesswhen duration shifts
from hedges of one day, to one week and four weeks. For the direct
FTSE 100 hedge, effectiveness improves for all types of risk averse
investor as duration rises. For example, for the weakly risk averse
investor: v=2 (highly risk averse investor: v=200), risk reduction
increasesfrom 70.9% (62.0%), to 79.3% (71.9%) to 83.3% (89.2%) for
daily, weekly and four weekly hedges. Longer hedges relating to the
Mid250 contract are also more effective than shorter hedges for
allcategories of risk averse investors. The increase for the Mid250 is
more marked. For some values of v hedging effectivenessis greater for
the Mid250 than for the FT SE 100 contract for four week hedges. Even
so, the benefits of greater risk reduction achieved through employing
longer hedges, result in adecline in the mean returnsin the case of both
the FTSE 100 and Mid250 contracts.
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It isalso seen that for direct hedges consisting of the FTSE 100 and
Mid250 indexes, as duration increases, so does the size of the hedge
ratio. This reflects the fact that basis risk is lower for longer hedges.
Figures 2(ai) and 2(hii) show that not only do hedge ratios for longer
durations increase, but they are also characterized by greater stability.
This is consistent with the theoretical underpinnings of the EMG
coefficient, since as risk aversion increases, the EMG hedge ratio is
being calculated with respect to an increasingly smaller subset of
observations. Therefore, the potential for the hedge ratio to change is
severely constrained.

There is also evidence of a duration effect for the various cross
hedgesinvolvingthe FT SE 100 and Mid250 contracts. Comparing daily
and four week hedges in tables 2 and 4, it can be seen from panels A
and B, that for the FTSE 100 and Mid250 contract, longer hedges
reducerisk by up to about 20% for all categoriesof risk averseinvestors
using the EMG approach. It is also evident from figure 2, that cross
hedges associated with the FTSE 100 contract are less sensitive to
changesin risk aversion than are those associated with the Mid250. In
fact the hedge ratio series associated with the FTSE 100 contract (in
figure 2a) are smoother and more uniform than those for the cross
hedges associated with the Mid250 contract (figure 2b). For the hedge
ratio series characterized by considerable variation, (for example,
between the FTSE 100 contract and FTIT index, and the Mid250
contract and the FTSE 100 index), it is reasonable to hypothesize that
unhedgeable cross hedging risk may contribute to thisinstability. This
holds because the FTSE 100 and Mid250 contracts mirror the
performance of specific sectors of the market, and are likely to be less
responsive to shocks which occur in areas of the market which are not
specific to their underlying index. For the Mid250 contract thisislikely
to be exacerbated by thintrading, especially for shorter duration hedges.

Finally, it is again worth noting the differences in hedge ratios
estimated by the MV and EM G approaches even for four week hedges
and relatively low levelsof v. For example, consider hedging the FTIT
index with the FTSE100 (Mid250) contract. For four week hedges the
MVHRIis0.91 (1.00) comparedto0.81 (0.95) for v =3. Indeed the EM G
hedge ratio varies from 0.80 (0.95) to 1.10 (1.05) depending on v.
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V. Conclusions

This paper examines hedging and cross-hedging effectiveness of the
FTSE 100 and Mid250 contractswithin EMG and MV frameworkswith
respect to a range of stock indexes. The EMG approach is consistent
with the rules of stochastic dominance and offers flexibility in
determining the optimal hedge ratio by alowing for differentiated risk
aversion. It thereby captures the observed diversity in hedging
objectives and behavior. Overall results show that the traditional
reliance on the MVHR for generating the optimal hedge ratio may be
misguided, even when using more advanced econometric techniques
suchas GARCH. Theresultsindicatethat whiletheMVHR isgenerally
applicablefor weakly risk averseinvestors, it isinappropriate for more
highly risk averse investorswho areincreasingly concerned about their
exposure to downside risk. As such, while the MVHR may be suitable
for some investors, it is not for others. In contrast, the EMG approach
isapplicable to all classes of risk averse investors.

Theresults aso confirm that the EM G hedging approach is useful
for cross hedging. The FTSE 100 contract produces the most effective
hedges for indexes dominated by large capitalization stocks, and the
Mid250 the most effective for indexes dominated by smaller
capitalization stocks. It is apparent that using the EMG approach to
generate cross hedges, produces hedge ratios characterized by greater
variability. Furthermore, results show that hedgeratios generated by the
EM G approach are associated with astrong duration effect, with longer
duration hedges achieving greater risk reduction for all categories of
risk averse investors. However, thisis at the cost of adecline in mean
returns. In conclusion, it is evident from the results presented here that
the EMG approach to hedging is more generally applicable than is the
MYV approach, which has been widely used in theliterature. Theresults
giveclear guidance asto how investorscan devise hedging strategieson
the basis of the portfolio to be hedged, the degree of risk aversion and
the duration of the hedge.
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