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This paper proposes the generalized use of fractional Brownian motion in
a multifractal trading time framework to reveal variation in the index price
diffusion process that appears before and after 'extreme' events of distinct origin.
"Crashes" following internal self-organization and those caused by external
shocks differ in the relaxation process. The goal of this paper is to test for
differences in the price diffusion process related to the organization of trading.
(JEL: C65, D53 D84, G01, G14)
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1. Introduction

Growing competition between different stock exchanges raises the
general question of finding the most efficient way to organize securities
trading. Financial market microstructure research specifies certain
characteristics of a good market: low operational costs, availability of
information, liquidity, and information efficiency. Mandelbrot (2001)
suggests that price variations do not directly reflect changes in the
economic fundamentals, but are rather the outcomes of the structure of
the financial system and the agent’s responses to a variety of
information. Accordingly, this study employs an empirical test of
nonlinear volatility modeling (multifractals) in an attempt to reveal
information efficiency differences in auction and dealer markets around
extreme events.

The major attraction of multifractal processes is their ability to
generate long memory in returns of different scales; a process typical of
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financial time-series. This paper proposes a comparison of the
multifractal spectra of stock index prices to measure market ability to
efficiently process information and to ensure high liquidity. The
investigation is based on the Multifractal Model of Asset Returns
(MMAR) of Calvet and Fisher (2002). This model assumes that stock
prices follow a compound process of Fractional Brownian motion and
stochastic trading time capturing the thick tails and long-memory in
volatility persistence. Multifractal spectra of stock index prices and
trading time may reveal the effect of the trading system on the price
function. Pesin and Weiss (1997) motivate the study of multifractals and
offer complete multifractal analysis for several classes of dynamical
systems.

Johansen, Sornette and Ledoit (2000) assert that financial markets
are similar to complex dynamical systems. The different parts of
complex systems are linked and affect one another. A complex system
may exhibit deterministic and random characteristics with a level of
complexity depending on the system's dynamics and its interactions
with the environment. But complexity is also related to chaos -
aperiodic long-term behavior that exhibits sensitive dependence on
initial conditions and has limited predictability of subsequent dynamics.
The comparative analysis of stock market data during periods of
extremes is motivated by the scientific evidence in physics that such
complex dynamical systems reveal their properties better under stress
than in normal conditions. A better understanding of the dynamics
around extreme events would allow the prevention of "crises" or at least
achieve more desirable outlier outcomes. Furthermore, in case of
chaotic dynamics where small inputs may yield large outcomes, such
controls may be feasible at low cost.

Yalamova and McKelvey (2010) suggest that fractality in price
dynamics points to herding behavior and self-organization among
traders when the market moves away from equilibrium, therefore there
is an expectation differences will be detected in the price diffusion
process as reflected in different mechanics of trading between auction
and dealer markets. Moreover, detecting different self-organization
patterns among traders will allow the design of better regulatory and
intervention strategies to prevent crashes.

The paper is organized in the following way: market efficiency and
trading mechanics for dealer vs. auction markets are discussed in the
following section. The article then explains singularities, the Hurst
exponent and the multifractal spectrum. The next section introduces
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Fractional Brownian motion in the multifractal trading time model of
Calvet and Fisher (2002) and its relevance to research in market
microstructure. Presented results are analyzed and suggestions for future
research are offered. In brief, the results of the Hurst exponent
estimation and the multifractal trading time indicate differences in the
index price diffusion process arising from differences in the trading
organization. Further research with high frequency data is recommended
to reveal finer details.

II. Dealer vs. Auction Market

Security exchanges operate as a continuous market with a trading
system that can take the form of an auction market or dealer (market
maker) market. In an auction market, buy and sell orders are matched
according to price and time priority. The order driven trading system
works well in a stable market but tends to break down under adverse
conditions. The Tokyo Stock exchange does not provide market making
services and makes a good example of an auction market for the
purposes of this study.

The NASDAQ is a dealer market, wherein market participants are
buying from and selling to a market maker, who will always clear
trades. This quote driven trading system guarantees immediate
execution in the presence of competing market makers. The second
example of a dealer market in this study is the London Stock Exchange.
Although quote driven until 1997, it differs from the NASDAQ in the
first 512 day sample period before the crash of 1987 (starting October
1985). In 1986, the LSE switched from a closed, floor-based,
broker-dealer market to an open, electronic quotation system SEAQ,
which operates much like the NASDAQ's. In addition to changing its
systems, the LSE also enacted new rules designed to encourage
competition and narrow quoted spreads. In the second researched period
in this study (2001), the LSE operates as a "hybrid" market.

When individuals are buying and selling between one another, an
auction takes place, i.e. the highest bidding price will be matched with
the lowest asking price. In addition to the auction system, the NYSE has
a specialist market system. In case of market imbalance, specialists
make adjustments by buying and selling out of their own account, i.e.
a "hybrid" market.

In October of 1997, the London Stock Exchange changed its trading
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FIGURE 1.— Order flow and execution in an auction market.

system from a dealership system (SEAQ) to an auction system of limit
orders (SETS), although choice of trading venue is unconstrained and
dealership services are voluntarily supplied.

To compare liquidity between market types, some researchers such
as Pagano and Roell (1990) and De Jong, Nijman and Roell (1995) have
analyzed the spread and observe that it is lower at the Paris Bourse
(auction) than at the LSE (dealer market). Lee (1993) reports lower
spreads on the specialist market of the NYSE compared to those at
NASDAQ. Similarly, Christie and Huang (1994) find lower trading
costs at the NYSE compared to NASDAQ.

In a hybrid market, Friederich and Payne (2002) find that variables
which proxy for market-wide liquidity and informational risks also
affect the choice of trading venue. This poses the question of whether
the coexistence of both trading systems in a market leads to increased
efficiency. Efficient market theory suggests that prices adjust quickly to
the new information. As new information arrives at the market in a
random manner, prices should follow Geometric Brownian motion (in
continuous time), where the risk (o) scales with ~T which translates in
Hurst exponent H = 0.5 or random walk (in discrete time).

The results show that "hybrid" markets are closest to a random walk
(H=0.5), which would support weak-form efficiency. Existing choices
of trading venue facilitate quick adjustment of prices to new
information.
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FIGURE 2.— Order flow and execution in a dealer market.

Estimates of the Hurst exponent 0.5 < H < 1.0 reveal long memory
in the autocorrelation function, i.e. the autocorrelation function p(x) has
a very slow decay that follows power law:

p(k)=Ck™

where C is a constant and « is the lag of the autocorrelation function.
The Hurst exponent is related to the exponent a of the autocorrelation
function:

H=1-2,
2

The reported values of the Hurst exponent (H), in either quote driven or
order driven markets, point at long memory in the volatility of index
prices, which might be caused by inefficient trading organization that
slows the process of incorporating news into the stock prices. A Hurst
exponent value (H) such that 0.5 < H < 1 indicates "persistent behavior"
(e.g., a positive autocorrelation).

A number of studies attempt to research the impact of the system on
the efficiency of trading. This article’s conjecture is that the
organization of trading impacts the price diffusion process. Therefore,
the scaling function of the index prices is first calculated in order to
obtain the Hurst exponent of the Fractional Brownian motion as
described by Fisher, Calvet and Mandelbrot (1997). Trading time MFS
changes before and after significant drawdowns are compared,
attempting to extract information about the development of a "bubble"
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and recovery patterns. Yalamova (2003) also explains the motivation for
the research of index price patterns around "market crashes".

III. Brownian Motion and Multifractals
A. Hurst Exponent

The Hurst exponent was first used in hydrology and later in applied
mathematics, fractals and chaos theory, and spectral analysis. Benoit
Mandelbrot explores the application of the Hurst exponent to financial
time series in Fractals and Scaling in Finance (1997). Edgar Peters also
discusses the Hurst exponent application to financial time series in
Chaos and Order in the Capital markets (1996). The mathematical
intuition behind the Hurst exponent is related to the singularity
spectrum of a function, i.e. that fractional part o which remains after n
time differentiation of the function at point x,. Mathematicians also
call this the Holder exponent.

The singularity of a function g(x) is measured by the Holder exponent
() at point x, as:

\g(x)—Px(x—xo)\<C\x—x0\aL,

where C is a constant and P, is the degree of the polynomial, e. g. g(x)
is n times continuously differentiable in x, and the polynomial P,(x) is
the first n +1 terms of the Taylor series expansion of g(x) in x, .

B. Multifractal Spectrum

Halsey et al. (1986) characterize the singularity of fractal measures by
their strength a and their density distribution f{a). The spectrum of
singularities is given by the ranges of a and f(ar). In monofractal cases
the spectrum will collapse to one point only, known as the Hurst
exponent H. Concavity of the scaling function 7(q) is evidence of
multifractality and existence of more than one singularity exponent. The
calculation of the multifractal spectrum of time series is performed on
the scaling function 7(g) via the Legendre transform:

7(q) > min[ga - f(a)].
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For more details on the methodology and the algorithm of the
multifractal spectrum calculations in Matlab, see Yalamova (2003).

C. Application to Trading Mechanics

Gontis and Kaulakys (2004) analyze the relation between the power-law
autocorrelation and the origin in the power law probability distribution
of trading activity and confirm that the multiplicative stochastic model
of the time interval between trades in the financial market is able to
reproduce the main statistical properties of trading activity and its
power-spectral density. Calvet and Fisher (2002) develop a model of
asset returns relating the power spectrum of the price function and the
fractality of trading time. Gopikrishnan et. Al. (2000) also provide
empirical evidence that the long-range correlations for volatility are due
to trading activity.

Therefore, it is suggested that markets with different trading
organizations should be tested for differences in the Hurst exponent
around market crashes. As argued by Yalamova and McKelvey (2010),
self-organization and increased interdependence between traders under
conditions of information complexity and ambiguity in the market may
lead to bubble build up and changes in the price diffusion process.
Better understanding of these dynamics may permit the prudent
adaptation of regulations, trading platforms or intervention strategies to
prevent or ameliorate market crashes.

IV. Fractional Brownian Motion in Multifractal Trading
Time

Calvet and Fisher (2002) propose a model of asset returns that
decomposes the price diffusion process into a long memory process
characterized by a Hurst exponent (also called Fractional Brownian
motion of the price process) and a time deformation process represented
by the multiplicative cascade obtained by a simple iterative procedure.
The 1t6 process is a continuous diffusion that varies as (df)"* while
Fractional Brownian motion has an exponent0 < H< 1, but H # 1/2.0n
the other side, a multiplicative process has a continuum of values for the
exponent whose relative occurrence is summarized in a renormalized
probability density - the multifractal spectrum. The multifractal
spectrum in the Calvet and Fisher (2002) model is related to the trading
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time deformation process, while the Hurst exponent is calculated from
the scaling function 7z and represents the Fractional Brownian motion of
the price process.

In order to compare the market characteristics observed before
significant "drawdowns" and their after "crash" recovery patterns, the
Hurst exponent is estimated from the scaling function 7(g) according to
the following property described in Calvet and Fisher (2002):

(3

A. Hurst Exponent Results

The Hurst exponents are reported for periods around significant stress
situations (October 19, 1987 and September 11, 2001). The assumption
is that different causes of instability ("bubble build up" vs. "unexpected
event") will also be detectable in the parameters of the price diffusion
process.

When the Hurst exponent is greater than 0.5, the price diffusion
process exhibits long-memory in volatility. Table 1 illustrates that the
persistence in volatility in dealer and auction markets is higher than the
persistence in volatility in 'hybrid' markets. Moreover, the persistence
in volatility on the London Stock Exchange is much lower in 2001 (after
the introduction of SETS) compared to 1987 (dealer system). Increased
regularity of the price process before the "crash" of 1987 is also
reported in Yalamova (2003) for other international markets, as well as
other "bubble build-up" periods. The recovery process from a
'drawdown' is also different in the two types of markets in 1987 and
2001. While the 'hybrid' markets decreased their regularities after a
crash following a "bubble", they exhibit much faster recovery in the
"unexpected event" case. The "correction" of 1987 is regarded as a
natural development of acomplex dynamical system that self-organizes,
reaches a critical point and returns to equilibrium, while a crash due to
unexpected outside event (e.g. September 11, 2001) should not exhibit
self-organization and change in the volatility pattern in the preceding
period. The assumption of "normal" market before September 11, 2001
is also supported by the estimated average Hurst exponent reported in
Yalamova (2003), (i.e. DJIA: 0.5345, S&P500: 0.5604, FTSE
0.549478). Yalamova and McKelvey (2010) suggest that shock
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TABLE 1. Hurst exponent for the Fractional Brownian motion of daily closing
index prices around October 19, 1987 and September 11, 2001.

DITIA S&P500 FTSE NASDAQ NIKKEI

1987 hybrid dealer auction
before 0.6289 0.6180 0.6578 0.6849 0.6849
after 0.5208 0.5464 0.5681 0.6024 0.6097
overall 0.5952 0.5848 0.6329 0.6329 0.6535
2001 hybrid dealer auction
before 0.5208 0.5356 0.5208 0.6172 0.6024
after 0.5780 0.5834 0.5848 0.5917 0.5780
overall 0.5434 0.5618 0.5649 0.6024 0.5988

intervention will prevent a self-organizing market from reaching the
critical point where a crash will be followed by a slow recovery.

The NASDAQ consistently decreases its regularity in both of these
cases of drawdowns, but the change is smaller in the case of external
cause for the significant fall in the index. The results for the London
Stock Exchange index are comparable to NASDAQ in the first case and
similar to DJIA and S&P500 in the second, which is consistent with the
change in the trading system. Moreover, in 1986, the LSE introduced an
open electronic quotation system SEAQ, therefore the Hurst exponent
was recalculated for the FT'SE and NASDAQ for a period of 256 days
before the crash of 1987 for better comparison. The Hurst exponent for
NASDAQ is H=0.680272 for the FTSE is H=0.696864 for this period,
i.e. volatility persistence is very similar supporting the hypothesized
impact of the trading system on index price volatility.

The persistence in volatility in the auction market of the Tokyo
Stock exchange index is very similar to that of NASDAQ in both
instances. Therefore, the mix of trading systems might produce different
patterns in the volatility persistence around stress events, while auction
and dealer market display similar patterns within their group. These
initial findings lend encouraging support to efforts to expand research
in "normal" market and other "stressed" market conditions.

Average Hurst exponents should be viewed with caution as they are
only a part of the more complex representation of the asset prices in the
Fractional Brownian motion in multifractal trading time framework of
Fisher, Calvet and Mandelbrot (1997). Fractional Brownian motion is
too homogeneous for the representation of financial asset price
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FIGURE 3.— The Hurst exponent in the 'hybrid' markets is lower
before "drawdowns". Assuming that before September 11,2001 markets

were around 'normal’, a process close to a random walk was observed
for DJIA, S&P500 and FTSE (e.g. “hybrid” markets are more efficient).

processes, as the irregularity exponent should be the same at all times.
If the H exponent varies with time, the process exhibits multifractal
structure. A test of the multifractality of a process involves the linearity
of the scaling function 7(g).

The daily index price time series exhibits deviations from linearity
of the scaling exponent 7(g) suggesting the existence of a multifractal
spectrum, instead of one monofractal Hurst exponent. In the Finance
literature, Corrazza and Malliaris (2002) draw a similar conclusion for
a number of foreign currency markets. Muzy, Delour and Bacry (2000)
use the non-linearity of the scaling function as evidence of
multifractality of price fluctuations of financial time-series. Schmitt,
Schertzer and Lovejoy (2000), Bacry, Delour and Muzy (2001), and
Turiel and Pérez-Vincente (2002) use the non-linearity of the scaling
function to show that the estimate of two moments is by no means
sufficient for describing the entire distribution, proposing the use of
multifractal analyses and models in Finance research. Among the
important implications of multifractal analysis are the characterization
of all order moments and the validation of scaling models.
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NIKKEI 225

FIGURE 4.— The scaling functions 7(q) of the index price series
exhibit concavity. (on the y-axis: the scaling exponent, on the x-axis:
g-th moment).

B. Multifractal Trading Times Results

A fractional Brownian motion with Hurst exponent (H) between 0 and
1 is defined by a stationary increment process that follows a normal
distribution with zero mean and variance c*”. Self-similar stable
processes are obtained when a stable distribution replaces the normal.
Such processes have discontinuous paths with fractal properties, well
adapted for infinite variance stochastic modeling.

Monofractal Brownian motion and self-similar stable processes often
lack the flexibility to model real-world situations due to their simplicity
in scaling or due to non-stationarity of the underlying process.
Multifractal processes with non-linear scaling function and stationary
zero mean increments are proposed by Riedi (2002). This implies a
multifractal 'time warp', i.e., an increasing function or process M(t) for
which the multifractal formalism holds and a process B with
monofractal scaling properties H (fractional Brownian Motion) form the
compound process f3(¢):
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B(1)2 B, (M (1)),

In this case, M(¢), stands for a monotonic multiplicative cascade with
flexible multifractal properties and B, generally represents any
self-similar process with index H. The compound process 3(f) combines
the rich multifractal structure of a multiplicative cascade along with the
self-similarity and the non-monotonicity of Fractional Brownian motion
paths. Equality in respect to probability distribution holds almost
everywhere (a. e.) or almost surely (a. s.), in the sense of finite
dimensional distribution.

A cascade model accounts for the distribution of the volatility of
returns across scales but not for the fluctuation of these returns. The
multiplicative cascade model predicts strong correlations in the
volatility, while the truncated Lévy model (previously considered for
financial time series) assumes no such correlations. Ghashgaie et al.
(1996) propose a multiplicative cascade model for exchange rate
fluctuation. Arneodo, Muzy and Sornette (1998) reveal a multiplicative
cascade process in the volatility of the S&P500 return data.

The rigid correlation structure of Fractional Brownian motion is
somewhat restrictive for modeling purposes. Also, the slow decay of its
auto-correlation function inspires a weaker notion of "similarity on all
scales" in terms of second-order statistics, defined on varying lags of the
increment process rather than on the process itself.

Statistically self-similar and monofractal or multiplicative processes
may be defined on one side and almost surely increasing and
multifractal processes on the other side such that a multiplicative
cascade leads to multifractality and a strong deviation from normality.
Calvet and Fisher (2002) introduce a multifractal model of asset returns
that compounds a Brownian motion with a multifractal time
deformation process. Gaussianity, long range dependence and
multifractal structure are characteristics of Brownian motion in
multifractal time. If B(¢) is a fractional Brownian motion and stochastic
trading time 6(r) is a multiplicative process, then the compound process
X(#) := By[0(1)] is fractional Brownian motion in multifractal trading
time, combining a long range dependence process and positive
increment process with an underlying multifractal structure.

The multifractal spectrum reflects the n-point correlations and thus
provides more information about the temporal organization of price
fluctuations than 2-point correlations. The multifractal spectrum fla) is
a convex and single-humped function with a maximum at ¢, , where
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TABLE 2. The multifractal spectrum of price series with capacity dimension at ¢,
and very irregular instances at a,,;,.

DIIA S&P500 FTSE NASDAQ  NIKKEI

1987 MEFS «a hybrid dealer auction
before ay 0.5201 0.4911 0.5454 0.5506 0.5863
Olin 0.2424 0.1987 0.1728 0.2625 0.3203

after oy 0.3966 0.4184 0.4077 0.4898 0.5236
Olin 0.0886 0.1193 0.1478 0.1134 0.0436

2001 hybrid dealer auction
before ay 0.2928 0.3449 0.3051 0.4610 0.4323
Olin 0.1228 0.1697 0.2252 0.2469 0.2222

after oy 0.3890 0.4081 0.3964 0.4172 0.4159
Olin 0.2568 0.2940 0.2551 0.3142 0.2578

f(e,) is also called the capacity dimension D,. Scaling of positive
moments is estimated by a’s with values lower than «,, . The scaling of
the highest moment given by a,,;, in the empirical measurements reaches
down to values much lower than 0.5, representing an irregular price
process with high risk for investors.

The Tokyo Stock Exchange exhibits high capacity dimensions «,,
and comparatively high a,,, (low risk) for the price process before the
crash of 1987, while the two dealer markets follow the hybrid markets,
although with lower capacity dimensions that are not much riskier than
the dealer markets as measured by a,,,,,. The multifractal spectra (MFS)
before the crash of 1987 are different from the respective MFS in 2001.
Markets exhibit higher regularity before the crash of 1987 that is in line
with the hypothesis of "pressure build-up" reported in Yalamova (2003).
The multifractal spectrum of the price process is an intermediate step
that allows one to calculate the multifractal trading time spectrum.
According to the MMAR model of Fisher, Calvet and Mandelbrot
(1997), prices follow a compound process of fractional Brownian
motion and multifractal trading 6. The multifractal spectra calculated
from the price function defines the multifractal spectrum of the trading
time 6 as:

r(@=1 )

The multifractal trading time a, at the Tokyo Stock Exchange remains
the same after the event date. It is also observed that risk increases
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TABLE 3. The multifractal spectrum of trading time with swift passage of time at

low a,,;,.
DIIA S&P500 FTSE NASDAQ  NIKKEI
1987 MEFS «a hybrid dealer auction
before oy 0.8269 0.7947 0.7827 0.8038 0.8559
Olin 0.3855 0.3214 0.2479 0.3832 0.4677
after oy 0.7616 0.7656 0.7192 0.8130 0.8588
Olin 0.1701 0.2183 0.2606 0.1882 0.0716
2001 hybrid dealer auction
before ay 0.5636 0.6439 0.5857 0.7469 0.7176
Olin 0.2364 0.3168 0.4233 0.4001 0.3688
after oy 0.6730 0.6994 0.6778 0.7051 0.7195

0.4444 0.5039 0.4362 0.5309 0.4459

‘min

significantly in the "after crash" trading of 1987, exhibiting the highest
risk of all markets with outbursts of fast trading that may indicate
system breakdown in adverse conditions. In its information efficiency
aspect, the September 11, 2001 event might have been quickly
discounted. Markets, (except for FTSE), exhibit a decrease in risk
measured by a,,,, however the concavity of the spectrum for lower
Holder exponents (more irregular instants) implies disproportionate
contributions to volatility. The measure of trading time per unit of clock
time is high for low a's and is related to swift passage of trading time
according to Fisher et al. (1997). As explained in this model, the price
process has one Hurst exponent; therefore the irregularities with low a's
are due to trading time.

This model accommodates a wide range of financial prices and
permits the identification of a multiplicative measure empirically from
the estimated spectra. The daily data multifractal spectra are quadratic,
generated by log normally distributed multipliers M (<log, M ~ N (,6°).
Calvet and Fisher (2002) derive the calculation of A from the
multifractal spectrum of trading time (1 = ¢,/ H). The dealer markets
were much faster in trading around the crash of 1987. While all markets
exhibit a pattern of slowing down after the crash, the results suggest that
the hybrid markets exhibit the most pronounced slowdown. The results
for the period of 2001 are mixed. Inferences on the volatility pattern
connection to the trading systems cannot be made yet on such a small
sample. Also, the S&P500 index includes 500 stocks traded on different
exchanges, while the DJIA includes 30 stocks traded on NYSE and



Fractal Measures in Market Microstructure Research 151

TABLE 4. Trading time multifractal spectrum is characterized by lognormally
distributed multipliers M (—log bM ~ N (ﬂ,az)) , A's are reported in

the table.

DITA S&P500 FTSE NASDAQ  NIKKEI

1987 MES 4 hybrid dealer auction
before A 1.3148 1.2977 1.1232 1.1736 1.2497
after A 1.4566 1.4011 1.2687 1.3496 1.4084
2001 hybrid dealer auction
before A 1.0849 1.2023 1.1246 1.2099 1.1978
after A 1.1644 1.1988 1.1590 1.1916 1.2448

NASDAQ. Therefore, while it can be recognized that these are not close
proxies for hybrid markets, they could yet be seen as examples
illustrating the power of a new advanced methodology for volatility and
non-linear dynamics research.

V. Conclusions

The goal of market microstructure research under the efficient market
hypothesis (EMH) is typically to define trading mechanisms and
regulations that will lead to information efficiency and transparency
such that new information is quickly and reliably incorporated into
stock prices. Traders are portrayed as independent rational decision
makers and, as information arrives to the market in random fashion,
prices follow Brownian motion and no long memory in the
autocorrelation function of returns is observed. Although the EMH
allows for some temporary deviations (anomalies), they are classified
as random and therefore do not permit arbitrage.

Multifractality in asset returns has been empirically confirmed in
stock and foreign currency markets and has found its way into the
Multinational Finance Journal in Corraza and Malliaris (2002).
Acceptance of fractality though, leads to a number of problems in
mathematical modeling and derivatives pricing including the loss of
martingale properties. As argued extensively in Yalamova and
McKelvey (2010), "Fractal Finance" should not be seen as a competing
alternative to existing research within the efficient market paradigm, but
as an extension to accommodate situations having high information
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complexity and trader interactions coupled with positive feedback. In
such "bubble build-up" regimes, trader interaction feeds back to
influence individual decisions and the market self-organizes towards the
critical point.

The difference between a crash as a result of an unexpected event
(e.g. September 11, 2001) and as a result of self-organization of trading
activities and bubble burst should show up in the price diffusion process
before and after the event. The multifractal spectra of stock index price
time series were analyzed in light of the Multifractal Model of Asset
Returns of Calvet and Fisher (2002). A multifractal formalism based on
wavelet transform modulus maxima (WTMM), introduced by Muzy,
Bacry and Arneodo (1993), permits the determination of the whole
singularity spectrum f{a) directly from any experimental time-series.
This works in most situations and provides a unified multifractal
description of self-affine distributions. Additional technical details, the
Matlab algorithm, and an intuitive explanation of wavelet
(time/frequency) decomposition of financial time series are available by
request.

Data on daily closing prices for DJIA, S&P500, FTSE, NASDAQ
and NIKKEI 225 indices were analyzed around the crash of 1987 and
September 11, 2001 since complex dynamical systems reveal their
structure and properties better under stress (i.e. in extreme conditions).
The irregularity exponents and the Hausdorff dimensions of the
multifractal spectra were analyzed for differences in the volatility and
trading patterns. The goal of this paper is to increase interest in research
using multifractality to better describe the behavior of financial markets.
Although non-linearity is detected and characterized with parameters of
the multifractal trading time framework, more empirical evidence is
needed. The appropriateness of the proposed tests for market
microstructure research is advocated. Multifractal Model of Asset
Returns framework reveals information about the 'regularity' build up
before the crash of 1987 and the recovery period volatility and trading
time changes. Further research should be performed on high frequency
data.

Fractional Brownian motion with a compound trading time
deformation process represents an appropriate framework for market
microstructure research. The multifractal spectrum of trading time
permits the recovery of the multipliers of the underlying multiplicative
cascade process. This multifractal process reveals the interaction
between traders leading to information cascade and herding. A dynamic
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model of trading behavior should help policy makers to chose trading
organization structures, regulations, and crisis intervention strategies
that will both improve efficiency and prevent or ameliorate crashes.

Multifractal decomposition of invariant sets with complicated
geometry is an important part of the research of complex dynamical
systems such as financial markets. The multifractal spectrum (MFS)
reflects the n-point correlations and thus provides more information
about the temporal organization of price fluctuations than 2-point
correlations. MFS also can be used for the characterization of strange
attractors for chaotic dynamical systems (Halsey et al. 1986), a topic of
interest among Finance researchers but lacking consistent methods and
sufficient empirical evidence.
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