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This article documents the stochastic properties of bivariate returns to
international stock market indices. In particular, the article searches for the best
fit among a class of higher-order VARMA(u,v)-EGARCH(p,q) models with
normal errors and a constant conditional correlation using MSCI domestic and
world-ex-domestic index pairs for the Emu, Japan, the United Kingdom, and the
United States. Although a first-order VAR or VMA specification is sufficient
to accommodate the conditional means, second-order EGARCH terms are
necessary in two of the four bivariate series (JEL: G15 G11 C15 C34). 
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I. Introduction

This article examines the stochastic properties of bivariate daily returns
to the MSCI domestic and world-ex-domestic stock market index pairs for
the Emu, Japan, the United Kingdom, and the United States. In particular,
the article examines whether higher-order terms are necessary in these
series by searching for the best fit among the class of bivariate
VARMA(u,v)-EGARCH(p,q) models with a constant conditional
correlation and normally distributed errors using conditional mean and
volatility terms at lags of up to three days. First-order terms are usually
sufficient to capture the conditional mean and volatility of univariate price
series (Engle [1993]). First-order models have a more straightforward
economic interpretation than higher-order models, and are easier to
construct (He, Teräsvirta and Malmsten [2002]) and econometrically
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more tractable (He and Teräsvirta [1999]). The suitability of first-order
models for bivariate returns to international indices has not been
investigated. Higher-order terms could arise for many reasons, including
technical factors such as nonsynchronous measurement of returns (Lo and
MacKinlay [1990]) or behavioral factors (Hirshleifer [2001]) such as
market contagion (Bae, Karolyi and Stulz [2003]).

Higher-order conditional volatility terms are significant in half of
these bivariate series. This is about the same proportion as in the
univariate series. Although an EGARCH(1,1) model provides a
relatively good fit for bivariate U.K. and U.S. returns, second-order
EGARCH terms are useful in the Emu and Japan series. The additional
terms have significant coefficients and yield improved residual
behaviors and significant robust Wald statistics relative to the
EGARCH(1,1) model. The conditional means of these bivariate series
can be modeled equally well with first-order vector autoregressive
(VAR) or moving average (VMA) terms.

II. Data

In order to take the perspective of a domestic investor considering the
diversification benefits of international assets, Morgan Stanley Capital
International (MSCI) value-weighted domestic and world-ex-domestic
(world return excluding domestic return) stock market indices are
employed for the Emu, Japan, the United Kingdom, and the United
States. This contrasts with most studies of international returns, which
study correlations between national markets. The bivariate distribution
of domestic/world-ex-domestic returns is important because it
determines the diversification gains to domestic investors from
international investments. 

The model is estimated using continuously compounded local
currency daily returns to MSCI official price indices for the domestic
Emu, Japanese, U.K. and U.S. markets and their corresponding
world-ex-domestic indices over the period 02/01/1996 through
12/31/2002. These four domestic markets account for about 90 percent
of total MSCI stock market capitalization. Local currency returns are
used to represent returns earned by domestic investors that are fully
hedged against currency risk. As a practical matter, the stochastic
properties of local currency and U.S. dollar returns are quite similar. 

Some days in the sample period, such as national holidays, have a
zero (missing) return for a domestic index and a non-zero return for the
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corresponding world-ex-domestic index. To preserve the continuity of
the bivariate series, non-trading days in each domestic market are
aggregated onto the next trading day in that market. Returns to the
world-ex-domestic index over these periods are similarly aggregated
into a single return so that the world-ex-domestic sample aligns with the
domestic index. This convention preserves the perspective of a domestic
investor, for whom non-trading days in the domestic market have
volatilities that are only a small fraction of the volatilities on trading
days (French and Roll [1986]). 

Descriptive statistics for each series appear in table 1. Significant
skewness and kurtosis indicate that these observed daily returns are not
normally distributed. Seven out of eight skewness measures are negative
because of a few large negative returns, and five are significant at 5
percent. All eight univariate indices are leptokurtic and significant at 1
percent. These nonnormalities guide the choice of an EGARCH
specification to accommodate volatility asymmetry, as well as a robust
quasi-maximum likelihood estimation technique in Section III. 

Significant first-order autocorrelation is present at one percent in
each of the world-ex-domestic indices and at five percent in the Emu
index, presumably because the national markets comprising these
indices close at different times throughout the day. Six of the eight
univariate indices exhibit at least one significant second-order or
third-order partial autocorrelation, indicating that price-adjustment
delays last longer than one day in these data. 

The serial cross correlations reflect the closing times of the various
domestic and world-ex-domestic markets. Japan is the first market to
open and the United States is the last to close during each calendar day.
Thus, observed returns in Japan should be related to the previous day’s
world-ex-Japan returns and observed U.S. returns should be related to
the next day’s world-ex-U.S. returns. In table 1, first-order cross
correlation is indeed significant at 1 percent when the Emu (0.2062),
Japanese (0.3103), or U.K. (0.1821) index lags the corresponding
world-ex-domestic index. The first-order cross correlation between the
Japanese index and the corresponding world-ex-Japan index (0.3103)
actually exceeds the contemporaneous correlation (0.1743). First-order
serial cross correlation is only significant for the U.S. index when it is
paired with the next day’s world-ex-U.S. index (0.4006). Higher-order
serial cross correlations are insignificant, with the exceptions of two
third-order U.K. and one Emu serial cross correlations. Partial
autocorrelations and serial cross correlations at lags greater than three
are not significant in these data.
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1. Alternatives to EGARCH for modeling asymmetric conditional volatility include
(Glosten, Jaganathan and Runkle [1993]; Rabemananjara and Zakoian [1993]; and Hentschel
[1995]), contemporaneous asymmetry models (Babsiri and Zakoian [2001]), stochastic volatility
models (Wu [2001]), and regime-switching models (Hamilton [1989]; Fornari and Mele [1997];
and Ang and Bekaert [2002]). The EGARCH model has itself been extended in a number of
ways, such as fractionally integrated EGARCH (Bollerslev and Mikkelsen [1996] and Baillie,
Cecen and Han [2000]) and switching EGARCH (Daouk and Guo [2002]).

III. The Model

A bivariate VARMA(u,v)-EGARCH(p,q) model with a constant
conditional correlation and normally distributed errors is adopted using
conditional mean and volatility terms of up to three lags. This class of
models is a tractable and parsimonious way to produce unconditional
return distributions that fit the characteristics of observed returns to
international stock indices, including significant autocorrelations and
serial cross correlations at higher-order lags, time-varying means and
volatilities, and asymmetric conditional volatility with relatively high
comovements in the lower tails of return. The assumptions of a constant
conditional correlation and normally distributed errors are popular
because they are conceptually simple and computationally convenient.
VARMA-in-mean terms describe the linear relation of index returns to
recent returns and volatilities in that and another index. 

Nelson’s (1991) EGARCH model is a popular choice for modeling
volatility asymmetry in univariate returns in which volatility tends to
increase in response to bad news (Black [1976]; Christie [1982];
Cheung and Ng [1992]).1  Comparisons have favored EGARCH over
competing models for stock index returns in the U.S. (Pagan and
Schwert [1990]; Kim and Kon [1994]; and Chen and Kuan [2002]), and
Japan (Engle and Ng [1993]), emerging markets (Chong, Ahmad amd
Abdullah [1999]), and small stocks (Cao and Tsay [1992]). EGARCH
also has had success in modeling the implied option volatilities of stock
indices (Day and Lewis [1992]). 

Bivariate EGARCH has been successful in capturing interactions
between an international stock index and another stock index (Koutmos,
Negakis and Theodossiou [1993]; Koutmos [1996]; Booth, Martikainen
and Tse [1997]; Christofi and Pericli [1999]; and Niarchos, et al.
[1999]), exchange rates (Koutmos [2000]), interest rates [Lobo (2000]),
and financial market liberalizations (Kassimatis [2002]); and between
interest rate futures prices (Cheung and Fung [1997]; Tse and Booth
[1996]; and Tse [1998]) and volumes (Jacobs and Onochie [1998]). 
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A. A Univariate MA(1)-EGARCH(1,1) Baseline 

Estimation results based on bivariate models indicate that first-order
VMA(1) or VAR(1) terms are sufficient for modeling the conditional
means, but that second-order terms can be beneficial in the conditional
volatilities. Moreover, ARCH-in-mean terms are not significant in the
univariate series. Consequently, MA(1)-EGARCH(1,1) and MA(1)-
EGARCH(2,2) models are estimated for each index as baselines for
evaluating the bivariate models: 

(1)0 1 1

0 1 1 2 2 1 1 2 2ln ln ln
t t t

t t t t t

r a m

h h h g g

ε ε
ω ω ω λ λ

−

− − − −

= + +
= + + + +

where the gt= γzt+|zt|–E|zt| term captures the asymmetric effects of positive
and negative shocks on conditional volatility. Innovations εt are assumed
to be normally distributed, such that εt~N(0,ht) and zt= εt/oht ~ N(0,1).

Parameters are jointly estimated by maximum likelihood using the
BFGS method. Maximizing a Gaussian log-likelihood function under
nonnormality yields consistent estimators called quasi-maximum
likelihood (QMLE) estimators even if the residuals are not normal

(White [1982]). For testing QMLE estimators , the variance-ˆ
tΨ

covariance matrix must be adjusted as:

, (2)( ) ( )1 11 ˆ ˆˆ ˆ
t t t tVar C D C

T
− −Ψ =

where †t = –(1 / T)3 t
T

=1 Zt ( ), , = –(1 / T)3 t
T

=1 Δt ( )’Δt ( ),ˆ
tΨ ˆ

tD ˆ
tΨ ˆ

tΨ
Δt (•) is the outer product gradient vector and Zt (•) is the Hessian matrix
of the log-likelihood function at time t, and T is the number of
observations in the sample. 

B. The Bivariate VARMA(u,v)-EGARCH(p,q) Models

Several versions of a bivariate EGARCH(p,q)-M with VARMA(u,v)-in
-the-mean model for a domestic market x and a world-ex-domestic
market y are considered, 

(3)
0

0and  ln ln
t u u t u v v t v t t

t p p t p q q t q

R A A R M E H E

H H G
− −

− −

= + ∑ + ∑ + Θ +
= Ω + ∑ Ω + ∑ Λ
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for u, v, p and q up to three lags, domestic (x) and world-ex-domestic (y)
returns Rt = [rx,t ry,t]’, innovations Et =  [εx,t εy,t]’ such that εt ~ N(0,ht) for
each index, autoregressive conditional log volatility vector (ln Ht) = [ln
hx,t ln hy,t]’, moving average volatility vector Gt-1 = [gx,t–1 gy,t–1]’ such that
gt =γzt+|zt|–E[|zt|] for zt=εt/%ht~N(0,1) for each index, and ARCH-in-mean
effects ΘHt. The remaining terms are parameter matrices of the
appropriate order. Following Bollerslev (1990), we assume conditional
covariance is given by:

, (4)( )( ), , ,xy t xy x t y th h hρ=

where ρxy is the constant conditional correlation between rx and ry. 

C. Diagnostics

Ljung-Box (1978) Q statistics assess the goodness-of-fit of alternative
VARMA(u,v) conditional mean specifications. The Ljung-Box Q
statistic is defined by:

, (5)( )
2

,

1
2

L xy k
L k

Q T T
T k

ρ
=

= +
−∑

where are squared sample auto- or serial cross correlations at lags2
,xy kρ

from k = 1 to L. For a bivariate series, the QL statistic is asymptotically
chi-square distributed with 22 [L – (u + v)] degrees of freedom under the
null hypothesis that a particular model is well specified. 

Hosking (1980) extends the Q-statistic to multivariate models. In the
case of a bivariate model with a maximum lag L, the multivariate
portmanteau statistic is defined by:

(6)( ) ( )
1 ' 1

0 00 00 01

1 ˆ ˆ ˆ ˆ2
L

L k kk
P T T Trace C C C C

T k
− −

=
⎡ ⎤= + ⎣ ⎦−∑

where

.( )1 '
0 1

ˆ ˆ ˆT

k t t kt k
C T E E−

−= +
= ∑

For a bivariate series, Hosking’s portmanteau statistic is asymptotically
chi-square distributed with degrees of freedom 22 [L – (u + v)] under the
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null hypothesis that the residuals are white noise. A rejection indicates
that at least one of the two bivariate series is not white noise. We chose
L = 20 after investigating various lags for the P and Q statistics. 

Engle and Ng’s (1993) joint bias test statistic is used to detect
misspecifications related to asymmetries in the conditional volatilities.
This statistic examines whether squared normalized residuals can be
predicted by observed variables that are not included in the model: 

(7)( )2
1 1 1 1 1ˆ ˆ ˆ1t 0 1 t 2 t t 3 t t tφ φ w φ w φ w eε ε ε− − −

− − − − −= + + + − +

where w t
–

–1 is a dummy variable that takes the value 1 when the residual
is negative and 0 when positive. This joint bias test combines Engle1t̂ε −

and Ng’s sign bias (φ1w t
–

–1), negative size bias (φ2 w t
–

–1 ), and positive1t̂ε −

size bias (φ3 (1 –w t
–

–1) ) tests into a single nonparametric statistic.1t̂ε −

The null hypothesis H0: φ0 = φ1 = φ2 = φ3 = 0 is evaluated with the test
statistic TR2 from this regression, which is asymptotically chi-square
distributed with three degrees of freedom. If any of the φi are significant
based on a one-tailed test, then equation 3 is not fully predicting the
effect of the shock at time t – 1 on the conditional variance at time t. 

Engle’s (1982) LML statistic tests for ARCH(L) disturbances in the
residuals. LML statistics are calculated by regressing squared
standardized residuals on a constant and L lagged values of the squared
residuals. The LML test statistic is calculated from the adjusted R2 of this
regression, (T – L) R2, and is asymptotically chi-square distributed with
L degrees of freedom. A lag of 4 is chosen for the LM statistic because
the models have at most third-order terms. If LM4 is significant based on
a one-tailed test, then the model is not fully predicting the effects of
shocks at times t – L through t – 1 on the conditional variance at time t.

For the final model, some additional tests are applied to the
conditional volatility specification. LML statistics at lags of L = 2, 3, and
4 test the various EGARCH specifications. Q2

2
0 statistics of the

conditional mean specification based on 20th-order autocorrelation in the
squared standardized residuals test for volatility clustering in the final
model. QL

2 statistics are simply QL statistics applied to squared
standardized residuals and are asymptotically chi-square distributed
with 22 [L – (u + v)] degrees of freedom. 

A robust Wald (1943) test is conducted to see if the VARMA and
EGARCH coefficients of order higher than 1 are jointly significant. To
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test the quasi-maximum likelihood parameter estimates  againstθ̂
restrictions θ0 , note that T1/2(θ = θ0) is asymptotically normally
distributed under the null hypothesis. Squaring this and dividing by the

variance of the estimate  yields a robust Wald statistic,θ̂

(8)( ) ( )2

0
ˆ ˆ/ varW θ θ θ= −

that is asymptotically chi-square distributed with degrees of freedom
equal to the number of restrictions being tested. A significant Wald
statistic implies that higher-order coefficients are jointly significant, and
that omitting them is likely to cause biased estimation. 

Finally, bivariate normality in the residuals from the final models are
tested with a Kolmogorov test on the univariate residuals and Mardia’s
skewness and kurtosis tests on the bivariate residuals. Residuals should
be able to pass these normality tests if the VARMA-EGARCH model
with normally distributed errors is well specified.

IV. Estimation Results

A. A Univariate Baseline for the Higher-order Terms

An MA(1)-EGARCH(1,1) model is first estimated as a baseline for
evaluating the bivariate series. The choice between an AR(1) and an
MA(1) conditional mean specification was not critical, as each was able
to account for the conditional means. Higher-order conditional mean
terms were not significant and didn’t improve model performance. 

Table 2 reports parameter estimates and diagnostic statistics for the
MA(1)-EGARCH(1,1) model. All of the parameter estimates are
significant, with the exception of a few constant terms. The persistence
parameters ωx,1 range from 0.956 to 0.983, and the news impact
parameters λx,1 range from 0.057 to 0.175. EGARCH is preferred to
GARCH, as the EGARCH asymmetry term γ is negative and significant
in each series. Although each of the series except the Emu has
non-normal residuals, the remaining diagnostic tests reveal very few
other problems. The Emu series is the exception, with poorly behaved
but relatively normal residuals. 

Table 3 reports estimates and diagnostic statistics for each of the
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univariate series using an MA(1)-EGARCH(2,2) model. Adding
second-order conditional volatility terms yields four significant
persistence parameters ωx,2 and one significant news impact parameter
λx,2. The four series that have significant ωx,2 terms also have significant
robust Wald statistics. The residual behaviors of the second-order models
are similar to those from the first-order models. As with the second-order
model, the Emu is the only series that does not pass the diagnostic tests.

B. Higher-order Terms in the Bivariate Series

The partial autocorrelations and serial cross correlations in table 1
suggest that coefficients on the lagged ARt–1. and MEt–1 terms are likely
to be important, and that the importance of these terms may differ across
market pairs. An exhaustive search through the class of
VARMA(u,v)-EGARCH(p,q) models for arbitrary lags 0 through L
would include (L + 1)4 distinct model specifications. For a maximum lag
of L = 3, this would include (3 + 1)4 = 256 model estimations. 

To reduce the search space, assume that the conditional mean and
conditional volatility structures are independent beyond one lag and
insignificant beyond three lags. This allows a separate search through
the set of VARMA(u,v)-EGARCH(1,1) and VARMA(1,1)- EGARCH(p,q)
models using a maximum lag of 3. This assumption reduces the search
space to 2( 3 + 1)2 = 32 model specifications. Diagnostic statistics for
VARMA(0,0) and EGARCH(0,0) models are reported as a baseline.
Diagnostic statistics reject these unconditional models at a 1 percent
significance level in each case. 

A search is conducted for the most parsimonious model with
insignificant probability values (p-values) on the diagnostic statistics,
imposing this criterion separately for the EGARCH and VARMA
searches. In particular, a search is conducted for the most parsimonious
VARMA(1,1)-EGARCH(p,q) model according to the p-values of the
LM4 and joint bias statistics across the various EGARCH specifications.
Another search is then conducted for the most parsimonious
VARMA(u,v)-EGARCH(1,1) model that minimizes the maximum
misspecification in the p-values of the Q20 and P20 statistics. 

Wald statistics are calculated relative to the first-order model in each
variable. Models with lags greater than (1,1) are compared to the (1,1)
model. Models with only a p or u term are compared to a (1,0) baseline.
Models with only a q or v term are compared to (0,1). The Wald statistic
thus provides a test of whether higher-order terms are jointly significant
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2. Diagnostic p-values that exceed 0.95 for the U.S. EGARCH(0,2) and EGARCH(2,2)
models merely indicate that residual autocorrelations are smaller than normal, and hence benign.

relative to the comparable first-order (1,0), (0,1) or (1,1) model. Note
that a significant Wald statistic in a second-order model will generally
result in a significant Wald statistic in similar third-order models
because all higher-order terms are compared to a first-order base. 

Table 4a reports LM4, joint bias and Wald tests for the various
VARMA(1,1)-EGARCH(p,q) candidate models and market pairs. Table
4b reports p-values for these diagnostic statistics. Some general
conclusions are apparent from the tables. First, diagnostic statistics tend
toward insignificance at higher lags in each series. Also, at least one
lagged volatility term is necessary to introduce persistence into
estimates of conditional volatility, as specifications from (0,0) to (0,3)
are poorly behaved across all four series. EGARCH(1,0), (2,0), or (3,0)
are not considered, as these models reduce to a constant-variance model.

EGARCH(1,1) works well for the U.K. and U.S. series in tables 4a
and 4b, rendering the diagnostic tests insignificant in these series. Wald
tests for joint significance in the higher-order terms for the U.K. and
U.S. series are significant, but the other diagnostic tests show that
EGARCH(1,1) is sufficient to accommodate the observed volatility
persistence in these series.2

Higher-order terms are necessary for Japan, where the LM4 statistics
indicate ARCH(4) disturbances in the residuals of the EGARCH(1,1)
model. Lags of at least (1,3) or (2,2) are necessary to remove
significance in the LM4 statistics. EGARCH(2,2) is adopted as the
parsimonious model for Japan, although (1,3) works as well. The
significant Wald statistics for Japan confirm that the higher-order terms
are jointly significant.

Tables 4a and 4b also suggest that a higher-order EGARCH term can
improve the fit of the Emu series. In particular, lags of (1,2) or (2,1) or
higher are necessary to remove significance in the LM4 statistics.
Whether the second-order lag is on previous volatility or innovation
does not seem to matter. Note that higher-order lags cannot remove the
significance in the joint bias statistics for the Emu, although
EGARCH(0,q) models with q $ 1 do improve the behavior of the
squared normalized residuals. Choice of the best model for this series
is difficult, as the Wald statistic is significant for the EGARCH(2,1)
specification, but not for the EGARCH(1,2) specification. The next
section assesses whether EGARCH(2,1) can improve on EGARCH(1,1)
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for the Emu series. This model is chosen rather than EGARCH(1,2)
because of its significant Wald statistic in table 4a. 

Tables 5a and 5b report Q20, P20 and Wald statistics for the various
VARMA(u,v) conditional mean models. The main conclusion here is
that VAR(1) and VMA(1) are equally capable of removing
intertemporal dependencies from the residuals. Indeed, diagnostic
statistics and their p-values are nearly identical across all four series for
these two specifications. Some conditional mean specification is
necessary, as the VARMA(0,0) specification is a poor fit for each series.
A VMA(1) conditional mean specification is adopted following Burns,
Engle and Mezrich (1998), although VAR(1) works as well. The final,
parsimonious models have a VMA(1) conditional mean and a
conditional volatility specification of EGARCH(2,1) for the Emu,
EGARCH(2,2) for Japan, and EGARCH(1,1) for the United Kingdom
and the United States.

V. A Parsimonious Model of Bivariate Returns to
International Stock Indices

Table 6 shows parameter estimates and diagnostic statistics for the
best-fitting VMA(1)-EGARCH(p,q) model for each series. With the
exception of Japan, the constant coefficients ax,0 and ay,0 are not
statistically significant, so these typically do not show a trend over the
sample period. The θ. terms also are not significant, so the level of
return is not related to volatility except through the conditional volatility
specification. This is consistent with most previous estimates of
ARCH-in-mean effects. 

These indices exhibit predominantly positive moving average terms
in table 6. The strongest effects are in the serial cross terms mxy,1 and
myx,1, which are positive and significant whenever one index closes before
another. For example, positive and significant mxy,1 terms for the domestic
Emu (0.319), Japan (0.301), and U.K. (0.226) indices reflect information
from world-ex-domestic markets (such as the U.S.) that arrives after the
close of the domestic market and is included in the next day’s domestic
return. Similarly, the positive and significant cross effect myx,1 for the
U.S. series (0.319) arises because world-ex-U.S. returns include
information from the previous day’s U.S. return. There are also positive
and significant moving average terms myy,1 for the world-ex-Emu (0.101),
world-ex-Japan (0.135) and world-ex-U.K. (0.177) indices. 
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The negative and significant moving average terms in the Emu
(–0.137) and U.K. (–0.088) appear at odds with the other moving
average terms. However, the sum mxx,1 + mxy,1 is positive for the Emu
(0.182), Japan (0.318), the U.K. (0.138), and the U.S. (0.085), so the
combined effect of serial and serial cross terms on domestic return is
positive for each domestic index.

The indices exhibit strong volatility persistence. All eight ωxx,1 and
ωyy,1 terms on lagged log variances are positive and significant. The ωxx,1

terms are close to unity for the first-order terms of the U.K. (0.931) and
U.S. (0.917) indices. Similarly, the ωyy,1 terms are close to unity for the
first-order terms of the world-ex-U.K. (0.884) and world-ex-U.S.
(0.970) indices. 

In the Emu, the effect is spread over two lags and often appears in
the cross effects. Each of the first-order autoregressive volatility terms
wxx,1 and wyy,1 are positive and significant, but the sums (ωxx,1 + ωxx,2) =
0.548 and (ωyy,1 + ωyy,2) = 0.750 are not as close to unity as in the other
series. The world-ex-Emu index also has a positive and significant
second-order ωyy,2 term. Positive and significant cross effects ωxy,1 =
0.744 and ωyx,1 = 0.125 are not a surprise, as Emu markets close after
Japan and before the U.S. Second-order cross effects are not significant.

Similarly, in Japan the sums (ωxx,1 + ωxx,2) = 0.969 and (ωyy,1 + ωyy,2)
= 0.952 are close to unity. The cross effects ωxy,1 and ωxy,2 have nearly
the same absolute value but opposite sign, so the ωxy,1 = –1.892 impact
of volatility in Japan on world-ex-Japan volatility at lag one is canceled
out by the cross effect ωxy,2 = –1.839 at lag two. The impact of
world-ex-Japan volatility on Japanese volatility is negative and
significant at lags one (ωyx,1 = –0.177) and two (ωyx,2 = –0.149), although
the magnitude of this cross effect is far less than the (ωxx,1 + ωxx,2) =
0.969 magnitude of the serial effect within the domestic Japan index. 

The γ. coefficients are negative and mostly significant, so the
positive λ. terms mean that conditional variances are larger when
previous innovations are negative than when they are positive. This is
a common finding in many asset prices, including international stock
indices (Kroner and Ng [1998]). The λxx,1 and λyy,1 terms are positive, and
generally significant for the first-order models of the U.K. (0.130), and
the U.S. (0.105 and 0.139), so negative innovations in each index have
a larger influence on conditional variance than positive innovations.
There is mixed evidence of asymmetric volatility traveling between the
indices in the first-order models of the Emu, U.K., and U.S., with a
single positive and significant cross effect λyx,1 for world-ex-Emu
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innovations on Emu returns. 
For Japan’s EGARCH(2,2) model, positive and significant λxx,2 and

λyy,2 terms appear at lag two but not at lag one. In contrast to the U.K.
and U.S. series, three of the four cross effects (λxy,1 = 0.089, λyx,1 = 0.101,
and λxy,2 = 0.108) are positive and significant in the Japan series. The
other cross effect (λyx,2 = –0.053) is not significant. As in the other
series, conditional variances are larger when previous innovations are
negative than when they are positive. However, the relation travels both
within and across indices and continues for two lags in the Japan series.

Overall, the diagnostics tests in table 6 indicate that an
VMA(1)-EGARCH(1,1) model captures most of the characteristics of
the U.K. and U.S. series. Diagnostic statistics for the Emu’s
VMA(1)-EGARCH(2,1) model and Japan’s VMA(1)-EGARCH(2,2)
model are slightly more problematic. All of the test statistics should be
insignificant if a model is well specified. Ljung-Box Q20 statistics on
standardized VMA(1) residuals are insignificant for each index. Each
bivariate series passes Hosking’s portmanteau test P20 of the VMA(1)
conditional mean specification. Q2

2
0 tests on squared standardized

VMA(1) residuals and LML tests for ARCH(L) disturbances reveal no
problems, with the exception of the LM3 test for Japan. The domestic
Emu index is the only one that fails the joint bias test. The
world-ex-domestic residuals and the bivariate residuals are unable to
pass the normality tests at a one percent significance level, suggesting
that an alternative error distribution might be worth exploring.  

In summary, a first-order vector autoregressive or moving average
process is sufficient to model conditional mean returns in these
international stock indices. Although first-order conditional volatility
terms are sufficient in two of the four series, second-order terms are
significant in the bivariate Emu and Japan series. Robust Wald statistics
on the second-order terms are significant relative to the EGARCH(1,1)
baseline, and residuals are poorly behaved without the second-order
terms. Finally, the univariate and the bivariate series generally have a
negative and significant asymmetric volatility term in the EGARCH
model, indicating a greater volatility response to negative innovations
than to positive innovations.

VI. Conclusions and Suggestions for Future Research 

This article documents the stochastic properties of bivariate returns to
MSCI’s domestic and world-ex-domestic stock index pairs for the Emu,
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Japan, the United Kingdom, and the United States. Bivariate returns to
these series are important because they determine the diversification
gains to domestic investors from international equity investments. A
search is conducted for higher-order terms in the class of bivariate
VARMA(u,v)-EGARCH(p,q) models with a constant conditional
correlation and normally distributed errors. 

Higher-order conditional volatility terms can be significant in these
data. A VMA(1)-EGARCH(1,1) model provides a relatively good fit for
the U.K. and U.S. series. However, higher-order EGARCH terms and
robust Wald statistics are significant in the Emu and Japan. This is
similar to the proportion of significant higher-order terms in the
univariate series. 

This study could be extended in many ways, as findings are limited
by the assumptions and data. For example, it may be fruitful to
investigate alternative conditional correlation structures or error
distributions, as Bollerslev, Engle and Wooldridge (1988) and King,
Sentana and Wadhwani (1994) find that stock index correlations vary
over time with higher correlations in bear markets (Longin and Solnik
[2001]; Butler and Joaquin [2002]; Bae, Karolyi and Stulz [2003]).
Nonnormal error distributions might prove useful (Liesenfeld and Jung
[2000]), such as the skewed generalized T (Theodossiou [1998]), stable
paretian (Mittnik, Paolella and Rachev [2002]), exponential generalized
beta (Wang, et. al. [2001]), or generalized error distribution (Nelson
[1988]). Also, higher-order conditional volatility lags could be
investigated in bivariate series that involve higher transaction costs,
more price adjustment delays, or lower liquidity than the large markets
examined in this study. 

Although the statistical significance of higher-order conditional
volatility terms is demonstrated in this study, their economic
significance is not. The economic significance of a more precise model
of conditional volatility is a potentially fruitful area of research and is
receiving increasing attention in the literature. For example, Fleming,
Kirby and Ostdiek (2001, 2003) assess whether an improved volatility
model can lead to better asset allocation decisions and estimate that a
first-order model of conditional volatility is worth 50 to 200 basis points
per year to a risk-averse investor relative to an unconditional volatility
model. The economic significance of higher-order conditional volatility
terms could be assessed in a similar manner.
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