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This paper presents a general optimization framework to forecast put and
call option prices by exploiting the volatility of the options prices. The approach
is flexible in that different objective functions for predicting the underlying
volatility can be modified and adapted in the proposed framework. The
framework is implemented empirically for four major currencies, including
Euro. The forecast performance of this framework is compared with those of the
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I. Introduction

The well-known Black-Scholes (1973) option pricing model (BS)
provides the foundation for pricing of options and derivatives.
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Unfortunately, BS does not evaluate the market’s expectation of future
volatility, but the expectation can be obtained by inverting the observed
option price. For each observed option price, the implied volatility (IV)
is the volatility implied by the BS option pricing formula given the
observed price.  This IV is widely believed to be the market’s best
forecast regarding the future volatility over the remaining life of the
option.  However, IV may be a biased representation of market
expectations for the following reasons: (i) transaction prices may not
represent equilibrium market prices; (ii) the option pricing model may
be specified incorrectly; and (iii) as the volatility of asset returns tends
to change over time, the constant variance assumption may be
unrealistic. 

A number of studies have focused on the predictive power of IV. The
empirical results are at best mixed. Earlier research by Latane and
Rendleman (1976), Schmalensee and Trippi (1978), Chiras and
Manaster (1978), Beckers (1981) indicate that IV is a better predictor of
actual volatility than volatility based on historical data. Lamourex and
Lastrapes (1993) conduct a joint test of the Hull-White (1987) option
pricing model and market efficiency, and they find that although IV
helps predict volatility, available information in historical data can be
used to improve the market’s forecasts as measured by IV. Day and
Lewis (1992) show that IV in the equity market contains incremental
information relative to the conditional volatility from GARCH models.
Similar results are also reported in Fleming et al. (1995), Christensen
and Prabhala (1998), Fleming (1998), Bates (2000), and Kazantzis and
Tessaromatis (2001). In contrast, Canina and Figlewski (1993) find that
IV volatility has little predictive power for future volatility. Jorion
(1995), however, reports that IV outperforms statistical time-series
models in terms of information content and predictive power, but IV
appears to be too variable relative to future volatility. 

Harvey and Whaley (1992), using S&P 100 index option, report that
implied volatility changes can be predicted ahead of time. This study
also indicates that implied volatilities tend to fall on Fridays and rise on
Mondays. Using CBOE Market Volatility Index (VIX), an average of
S&P 100 option implied volatilities, Fleming et al. (1995), however,
reject inter-week seasonality. Furthermore, this study indicates that VIX
is inversely related to the contemporaneous S&P 100 index return, and
that both daily and weekly VIX changes are more sensitive to the
negative than the positive stock market moves. Simon (1997) also
reports similar implied volatility asymmetries for treasury bonds and
futures options. Ederington and Lee (1996) claim that inter-week
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patterns of implied volatilities may be attributable to market
announcements; they show that the implied volatilities in the treasury
bonds and Eurodollar options on futures contracts tend to decline on the
days with scheduled macroeconomic announcements. 

As widely known, BS is mainly used for valuing options on stocks.
This model has spawned the field of financial engineering, which is
dedicated to designing and implementing such derivatives pricing
models. Has also found wide applications in modeling corporate bonds
and credit spreads in the presence of default and interest rate risks (see
for a recent application, Belhaj, 2006). For stocks, BS assumes that no
dividends are paid on the stock during the life of the option. This model
is extended by Merton (1973) for continuous dividends. Since the
interest gained on holding a foreign security is equivalent to a
continuously paid dividend on a stock share, the Merton version of the
BS can be applied to foreign security. To value currency option, stock
prices are substituted for exchange rates. 

The first application of modern valuation techniques to currency
options is generally credited to Grabbe (1983) and Garman and
Kohlhagan (1983). They considered foreign currency as an asset and
expected returns from holding foreign currency would depend on the
volatility of exchange rate in their model. The practical relevance of this
model as an approximate currency options pricing formula depends on
the investor’s ability to forecast exchange rate variability over the
remaining life of the option. The model is however, based on several
standard assumptions.

This paper provides a new approach to measuring volatility of
currency options prices explicitly from their past history. A general
optimization framework is proposed to forecast put and call option
prices by constructing optimal volatility forecasts based on past
information. The volatility is calculated as the weighted sum of the past
squared returns by minimizing the in-sample mean squared errors
between market and model prices. The future prices are predicted using
the BS option pricing model given the volatility forecasts. The objective
is to assess how well the past options market prices would forecast the
future ones. The emphasis is on assessing the accuracy of the forecasts,
rather than on how forecasts are formed.  

The paper has several attractive features. First, unlike other
approaches in the literature, this paper is concerned with modeling
volatility as an instrument to predict future option prices, rather as a
measure of risk. Second, this paper proposes a general framework to
forecast future option prices. This framework is flexible as it can be
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modified to accommodate different objective functions to forecast
future volatility with different option pricing models. Thirdly, this paper
uses the past option prices, rather than the underlying currency prices,
to calculate volatility. Although options derive their values from the
underlying currencies, spot and options markets are treated as separate
entities in this framework. This is a new idea in the options literature.
Finally, unlike the majority of work focusing on stocks and bonds
options, the current paper focuses on options on major currencies,
including Euro. 

The paper is organized as follows. The next section gives the
analytical framework and the data used in this study, followed by the
empirical results in sections III. The last section concludes the paper.

II.  Methodology and Data

The framework proposed in this paper can be summarized in the
following steps. The first step involves selecting a pricing model to
generate future prices. Unless otherwise stated, the pricing model
chosen in this paper is the BS option pricing model. Although the
constant variance assumption underlying the BS seems restrictive in
practice, it is not necessarily the case. It is highly possible that the
variance is constant over a short time interval but it is time varying over
a longer time horizon. In such a case, the BS is a valid model over each
of the short time intervals. This paper assumes that the variance of the
underlying asset’s return may be constant within a short time interval
(one day) but changing from one interval to another, that is, variance
changes on the daily basis but constant within the day. The implication
of this assumption is that IV derived from the BS of a particular day
would be a reasonable approximation of the true underlying volatility
for that day. 

In theory, if IV can be predicted ahead of time with reasonable
accuracy, then these volatility forecasts can be used as inputs to the BS
option pricing formula to forecast future call and put prices. This is the
second step of the proposed framework. Given the pricing formula,
volatility could be predicted as a weighted average of the past squared
returns, with weights calculated by optimizing appropriate objective
functions. The above idea can be implemented as a simple
spreadsheet-based application, and we name it as optimal weighted
volatility (OV) model. In this approach, the volatility is modeled as a
linear combination of the past squared returns from the observed put
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and call prices, with weights calculated by minimizing a given objective
function. This approach also describes the pattern of the volatility which
contains important information about investors’ behavior over time.
Finally, the forecast performance of BS option pricing formula using
OV is compared with alternative volatility models including the
Multiplicative Error Model (MEM) of IV and GARCH(1,1) model of
past squared returns. If OV provides superior volatility measures for
predicting future prices, then this approach will be an innovative way
to identify the underlying process of valuing currency options. In what
follows, we describe the details of this methodology, and the following
notations are used throughout the paper:

    spot exchange rate at time ;tS t

    expiration time of the option;T

    market price of a call option in domestic currency at time ;tC t

    market price of a put option in domestic currency at time ;tP t

    option exercise price in domestic currency at time ;tX t

    continuously compounded rate of return on risk-freed
tR τ

domestic interest rate with the maturity at time ;τ

    continuously compounded rate of return on risk-freef
tR τ

 foreign interest rate with the maturity at time ;τ

    cumulative normal distribution function;N

    volatility of the exchange rate at time .t tσ

Following Biger and Hull (1983), the price of a European call option on
currency is,

(1)( ) ( ) ( ),1 ,2 , , , , , ,
f d

t tR R d f
t t t t t t t t t tC S e N d X e N d c S X R Rτ τ τ σ− −= − =
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and similarly, the price of a European put option on currency is stated
as,

(2)( ) ( )1, 2,

f d
t tR R

t t t t tP S e N d X e N dτ τ− −= − − + −

( ), , , , , ,d f
t t t t tp S X R R τ σ=

where,

( ) 2

1,

ln / 0.5
,

d f
t t t t t

t
t

S X R R
d

σ τ
σ τ

+ − +
=

and

2, 1, .t t td d σ τ= −

Equations (1) and (2) are standard, and they state that the option
premium is the present value of the difference between two cumulative
density functions, d1 and d2. These two equations are used in this paper
with different volatility measures to generate forecasts for call and put
prices. For notation convenience, define 

, ,
f d

t tR R
t t t tS e X eτ τξ η− −= =

so that equations (1) and (2) can be rewritten as 

(3)( ) ( )1, 2, ,t t t t tC N d N dξ η= −

(4)( ) ( )2, 1, .t t t t tP N d N dη ξ= − − −

Note that in equations (3) and (4), all parameters except the volatility
are directly observable from market data. This allows a market-based
estimate of volatility of a foreign security. A variety of methods can be
applied to estimate the volatility and most researchers use the implied
standard deviation (ISD) from option market price as the current
estimate of IV. Let and denote the IV at time t for put and call2

,P tv 2
,C tv

option, respectively, which satisfies the following equations

(5)( ) ( ), ,, , , , , 0,d f
C t t t t t C t tf v c S X R R v Cτ= − =
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(6)( ) ( ), ,, , , , , 0.d f
P t t t t t P t tg v p S X R R v Pτ= − =

If put-call parity holds, then vP,t = vC,t = vt. Given both f (vC,t) and g (vP,t) 
are highly non-linear functions, the calculation of IV requires numerical
procedures such as the Newton-Raphson method. In this paper, a hybrid
of Newton-Raphson and Bisection methods are used to calculate IV.
This procedure is a standard iterative technique based on the first order
Taylor expansion of the function.

After the calculation of IV, the next step is to forecast future
volatility based on this information. One way is to estimate the
following model for vi,t, i = C,P.

( ), , , , ,, 1, , 0 , .i t i t i t i t i tv h iid i C Pε ε υ ε= > =∼

2 2 2
, , 1 , 1 , , 0.i t i i i t i i th v hω α β ω α β− −= + + >

This specification implies that the IV follows a Multiplicative Error
Model (MEM) as proposed in Engle (2002). A sufficient condition to
ensure the positivity of hi,t is to restrict all the parameters in the model,
namely, ω, α and  β to be positive. Given the past information and the
parameter estimates, the conditional volatility is estimated by 

(7), ,î t i thν =

for i = C,P and hence, the implied volatility model price (IVP) for calls ( )IV
tC

and puts can be generated by ( )IV
tP

(8)( ),, , , , , ˆIV d f
t t t t t C tC c S X R R τ ν=

(9)( ),, , , , , ,ˆIV d f
t t t t t P tP p S X R R τ ν=

It is to be noted that in the MEM presentation as above, the noise
sequence {εi,t : t 0 N} is a collection of independently and identically
distributed (iid) random variables with positive support, that is, P(εi,t #0)
= 0, to ensure that the conditional standard deviation, hi,t, to be positive
for all i and t. Given the actual distribution of εi,t is generally unknown,
this paper estimates the parameters in the MEM using the
Quasi-Maximum Likelihood Estimator (QMLE) with log-normal
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density, that is, the estimates are obtained by maximizing the
log-likelihood function with the log-normal density. The statistical
properties of this approach can be found in Allen, Chan, McAleer and
Peiris (2008). 

Another way to forecast volatility is to assume that the return of the
prices, ri,t for i = C, P, follow a GARCH(1,1) process. Let andMP

tC
 denote the call and put observed prices, respectively, at time, t.MP

tP
The returns are then calculated as

( ) ( ), 1log log , , ,MP MP
i t t tr i i i C P−= − =

where ri,t is assumed to follow a GARCH(1,1) process, that is,

 ( ), , , ,, 0,1 ,i t i i t i t i tr g iid i C Pμ κ κ= + =∼

2 2 2
, , 1 , 1 , , 0.i t i i i t i i tg r gλ γ δ λ γ δ− −= + + >

Given this specification, the future GARCH (1,1)-based volatility (GV)
for both put and call prices are estimated by 

(10), ,ˆ GV
i t i tgσ =

for i = C, P. Although this specification is very similar to the MEM
approach as discussed above, the underlying assumptions are quite
different. The MEM specification aims to model the volatility and not
the return, and consequently, the independent and identically distributed
random variable, εi,t, needs to be positive as mentioned above. In the
GARCH(1,1) specification, the endogenous variable is the price return
which can be positive or negative and hence, the iid random variable,
κi,t, can be any real number. However, since gi,t represents the
conditional variance of the price return in this case, a sufficient
condition to ensure the positivity of gi,t is to restrict all the parameters
in the conditional variance equation, namely, λ, γi, δi  to be positive.
Since the distribution of κi,t is generally unknown, the parameters in the
GARCH(1,1) model are estimated by QMLE  with normal density. The
statistical properties of the QMLE for GARCH process can be found in
Ling and McAleer (2003). 

Using the estimated GV, , the GARCH (1,1)-based volatility,ˆ GV
i tσ

model price (GVP) for calls  and puts  can be generated as GV
tC GV

tP
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(11)( ),, , , , , ,ˆGV d f GV
t t t t t C tC c S X R R τ σ=

(12)( ),, , , , , ˆGV d f GV
t t t t t P tP p S X R R τ σ=

Further to the above two approaches, it is also possible to utilize the
past information from both put and call prices directly to forecast the
conditional volatility for the purposes of predicting the future prices of
both put and call options. We introduce this new idea whereby previous
returns of the option prices are utilized and selected as optimal linear
combinations of previous absolute returns. The optimal combinations
are then used as inputs to the BS option pricing formula as defined in
equations (1) and (2) to predict future option prices. For identification
purposes, the term OV is used to label the conditional volatility obtained
in this way. The dynamics of the volatility is assumed to be

(13)'ˆ OV
t tw rσ =

where , , such that, ,( )1' ,..., 'qw w w= [ ]0,1 1..iw i q∈ =
1

1
q

ii
w

=
=∑

, so that l + m = q. To make( ), 1 , 1 , 1 ,,..., , ,...,t c t c t p t p t mr r r r r− − − −=
equation (13) operational, denote OV model prices for put and call by

and , respectively and let Pt and Ct  denote the observed pricesOV
tP OV

tC
for put and call options at time t, respectively. Note that both andOV

tP
are functions of , which depends on the weight vector w. ThisOV

tC ˆ OV
tσ

w vector is obtained by minimizing the with-in-sample mean squared
error (MSE) between it and , i = C, P:OV

ti

(14)( ) ( )2 21

1

min .
T

OV OV
t t t t

t

w T P P C C
ω

−

=

⎡ ⎤= − + −⎣ ⎦∑

This is a nonlinear optimization problem and does not have a
closed-form solution. It can only be solved by numerical methods.
Unless otherwise stated, all the optimal weights presented in this paper
were obtained by using the “solver” function in Microsoft Excel®. This
procedure has the added advantage that the optimal weights can be
calculated without using specialized optimization or statistical software. 

Apart from MSE, other objective functions can also be used to select
the optimal weight. For example, the mean absolute error (MAE)
between and  can be a more appropriate choice if there areMP

ti
OV
ti
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excessive amount of outliers and extreme observations in the sample. In
that case, the optimal weight is chosen by solving the following
minimization problem:

(15)1

1

min .
T

OV OV
t t t t

t

w T P P C C
ω

−

=
= − + −⎡ ⎤⎣ ⎦∑

Similarly, the mean absolute percentage error (MAPE) between andMP
ti

can also be used, in which case the optimal weight is chosen byOV
ti

solving:

(16)1

1

min .
OV OVT

t t t t

t t t

P P C C
w T

P Cω

−

=

− −⎡ ⎤= +⎢ ⎥
⎣ ⎦

∑

It is to be noted that the optimal weight vector (w) is assumed to be
constant over time.

Next, the optimal-weighted volatility model prices for calls ( )OV
tC

and puts ( ) are generated byOV
tP

(17)( ), , , , , ,ˆOV d f OV
t t t t t tC c S X R R τ σ=

(18)( ), , , , , ,ˆOV d f OV
t t t t t tP p S X R R τ σ=

where, , is a function of  the past information provided by both callˆ OV
tσ

and put prices. In implementing this procedure, our data on calls and
puts have the same time to maturity. However, they do not have the
same moneyness; when a call is in ITM, the corresponding put is OTM,
as the call-put pairs have the same strike prices. Unless otherwise stated,
the solutions to the optimization problem as stated in equations (14) to
(16) are obtained by using the Solver™ application in Microsoft
Excel™ with the default Newton algorithm. Thus, this analysis can be
conducted without any additional programming and it would be more
suitable as a practical application.   

We compute in-sample pricing errors to check for goodness-of-fit,
and out-of-sample pricing errors to check for predictive power. Pricing
error is defined as the deviation of model price from the observed
market price. The forecast performances of the models can be evaluated
by the following conventional criteria
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The mean squared error (MSE) = ( )2

1

1
,

s
j

t t
t

i i
s =

−∑

The mean absolute error (MAE) = 
1

1
,

s
j

t t
t

i i
s =

−∑

The mean absolute percentage error (MAPE) = 
1

1
,

js
t t

t t

i i

s i=

−∑

for i = C, P and j = IV, GV, OV. While MSE is the most commonly used
criterion to evaluate forecast errors, it has the well-known problem of
penalizing large errors disproportionately. This can result in biases in
conclusions if a sample contains excessive amount of outliers and
extreme observations. Therefore, the two other alternative criteria can
be used to provide a more general view about the forecast performances
of each model. The estimated errors are labeled as IVPE, GVPE and
OVPE for the three models, respectively. We now proceed to apply the
foregoing methodology to the data.

A. The Data 

The data used in this paper are for the following four currency options
– the British pound, the Euro, the Japanese yen, and the Swiss franc. All
data are obtained from DATASTREAM database, and provided in a
separate appendix available on request. The data consist of daily closing
prices for each option traded on the PHLX, daily spot exchange rates,
and daily Eurocurrency interest rates for the period. Option on Euro
started trading December 2000. The data set for all currencies,
therefore, includes the options trading period from January 2001 to
March 2006. There are some inconsistent data (due to recording error
in the database) for the Japanese yen from January 2001 to end of
March 2001 and consequently, these are excluded from the sample. 

The total number of daily observations is 1359 for British Pound,
Euro and Swiss Franc and 1300 for Japanese Yen, making a total of
5377 pairs of put-call option prices in our sample. The expiration dates
of options are within 90 days during the sample period. If the expiration
month has 5 Fridays, the options expire on the third Friday, otherwise
second Friday of the expiration month. The Eurocurrency interest rates
are used to determine daily domestic and foreign bond prices,
respectively.

For a bird’s view, table 1 provides the descriptive statistics of the
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data. As can be seen, for most of the data series, the mean and median
values are very close and the skewness is nearly zero. However, the
Jarque-Bera (JB) test rejects the null of normality which means the data
was unlikely to be drawn from a normal distribution. 

III.  Empirical Results

In this section we provide the empirical results based on the analytical

TABLE 1. Descriptive Statistics 

Currency Statistics Call Put Variables Spot Interest
price price Strike price rate rate

British  Mean 1.40 1.74 165.06 1.65 4.39
pound  Median 1.41 1.68 164.00 1.64 4.42

 Skewness 0.01 0.55 –0.02 –0.02 –0.37
 Kurtosis 3.37 3.38 1.57 1.57 2.66

 JB 7.90* 77.04* 115.49* 115.18* 38.02*

Euro  Mean 1.19 1.34 109.71 1.09 3.00
 Median 1.22 1.28 115.00 1.15 2.69

 Skewness –0.09 3.69 –0.23 –0.23 0.68
 Kurtosis 3.28 37.66 1.58 1.58 2.05

 JB 6.69* 71102.44* 126.47* 126.61* 154.45*

Swiss  Mean 1.01 0.83 73.77 0.72 1.55
franc  Median 0.91 0.81 73.50 0.75 1.22

 Skewness 25.75 0.54 24.66 –0.31 0.83
 Kurtosis 669.29 4.19 631.39 1.81 2.35

 JB 25288077* 147.41* 22497256* 102.17* 181.44*

Japanese  Mean 1.03 0.87 86.67 0.01 0.24
yen  Median 0.98 0.81 85.5 0.01 0.21

 Skewness 1.87 2.78 –0.04 0.03 1.38
 Kurtosis 11.49 26.26 2.12 2.18 5.26

 JB 4876.89* 32393.99* 43.38* 37.94* 719.18*

U.S.  Mean 2.91
dollar  Median 2.88

 Skewness 0.12
 Kurtosis 1.76

 JB 90.66*

Note:  The Jarque-Bera (JB) statistic follows a chi-square distribution with 2 degree of
freedom. The critical value of the chi-square distribution is 5.99 at the 5% level of
significance. The statistical significance level at 5% is denoted by *. 
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framework discussed in the previous section. More specifically, to
forecast the volatility inputs for call and put options, we estimate (i)
option prices based on IV model, using equations (8) and (9), (ii) option
prices based on return GARCH(1,1) model, using equations (11) and
(12), and (iii) option prices based on OV model, using equation (13)
under alternative weighting schemes.  The in-sample results are first
discussed, followed by the out-of-sample results.

A. In-sample Fit

For in-sample tests, the implied volatility model pricing error (IVPE)
and optimal weighted volatility model pricing error (OVPE) are
estimated under the three criteria, namely, MSE, MAE and MAPE. Note
that OVPE can be obtained under alternative weighting schemes [see
equations (14)-(16)]. The results with MSE as the objective function
(for weights), are given in table 2. As can be seen, based on the MSE
criterion, the OV model outperforms the IV model option prices for all
four currencies. Under MSE, OVPE is less than IVPE, on average, by
70.55 percent for British pound, 52.91 percent for Euro, 70.95 percent
for Japanese yen and 67.23 percent for Swiss franc. It indicates that OV
model prices fit the in-sample market prices better than those from the
IV model. However, the MAE and MAPE results in table 2 are not
favorable to OV model. These two measures indicate that IV model
tends to do better than the OV model. Interestingly, very similar results
were observed when MAE and MAPE were used as objective functions,
respectively (results not reported here, for brevity). 

As the OVPE results in table 2 are based on weights that capture
random information from past options prices, we now explore the nature
of these weights for each currency over the previous five trading days.
The observed weights, under MSE as the objective function, are given
in table 3. As can be seen from the last column of the table, over a
five-day window, the weights tend to be somewhat evenly distributed
across the previous five trading days. However, total weights of call
prices are higher than the total weights of put prices for British pound
and Swiss franc. For Euro, the total weights of put prices are higher than
the total weights of call prices, and somewhat evenly distributed for
Japanese yen between calls and puts. Thus, these weights do not seem
to follow any systematic pattern across currencies. However, it is to be
noted that the options on all four sample currencies are traded against
the U.S. dollar in the U.S. market. Since the trading volume influences
volatility, the relatively higher weights of call price volatility may
indicate that trading volume of call options on British pound and Swiss
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franc has been higher than that of put options. This might imply that the
U.S. market is a net importer in British pound and Swiss franc
denominated goods and services over the sample period. Similarly,
higher weights of put price volatility may indicate that the U.S. market
is a net exporter in Euro denominated goods and services. With MAE
and MAPE as objective functions, very similar results were observed
(results not reported here), implying that the weight function does not
seem to be sensitive to the choice of the objective function.

TABLE 2. Comparison of OVPE and IVPE: In-Sample

Measures Currency Options Model pricing errors and their difference in percentage

OVPE IVPE OVPE–IVPE Average
 %IVPE difference

%

MSE British Call 0.0804 0.2322 –65.37 –70.55
pound Put 0.1050 0.4327 –75.73

Euro Call 0.0813 0.1655 –50.88 –52.91
Put 0.1107 0.2457 –54.95

Japanese Call 0.0396 0.1485 –73.33 –70.95
yen Put 0.0314 0.0999 –68.57

Swiss Call 0.0368 0.0979 –62.41 –67.23
franc Put 0.0298 0.1066 –72.05

MAE British Call 0.6977 0.3556 96.20 84.16
pound Put 0.7916 0.4599 72.12

Euro Call 0.6639 0.3267 103.21 100.26
Put 0.7452 0.3777 97.30

Japanese Call 0.4585 0.3572 28.36 39.23
yen Put 0.4473 0.2980 50.10

Swiss Call 0.4345 0.2848 52.56 67.56
franc Put 0.4283 0.2346 82.57

MAPE British Call 0.6149 0.2639 133.00 110.44
pound Put 0.4864 0.2589 87.87

Euro Call 0.7082 0.3291 115.19 117.12
Put 0.6350 0.2899 119.04

Japanese Call 0.4436 0.3975 11.60 27.19
yen Put 0.4943 0.3462 42.78

Swiss Call 0.5224 0.3265 60.00 65.67
franc Put 0.5087 0.2969 71.34

Note:  OVPE and IVPE represent optimal weighted volatility model pricing error and
implied volatility model pricing error, respectively. MSE and MAE measures are to be
divided by 1000 and 100, respectively. In the last column, the average negative and positive
differences indicate that OVPE is less than IVPE and OVPE is more than IVPE, respectively,
by reported percent.
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B. Out-of-sample Fit

In-sample results, in general, indicate that OV model outperforms IV
model for pricing options under the MSE criterion. One may, however,
argue that the OV model prices fit in-sample better due to the additional
explanatory power from higher degrees of freedom. As a check, the
out-of-sample predictive power of the OV model is now examined in
what follows. For this purpose, the predictive power of OV model is
assessed against GV model, and the IV model under MEM.

To test the out-of-sample fit of the OV model, the weights (reported
in table 3) need to be recalculated by using equations (14). Using the
first 1000 observations, the estimated weights under MSE as objective
function are presented in table 4. As can be seen, the weighing patterns
are qualitatively similar to those in the table 3 for the full sample.
Overall, the weights estimated from the first 1000 observations to
forecast options prices for out-of-sample test are fairly similar to the
weights estimated from the full sample. This also holds when MAE and
MAPE were used as objective functions (the estimates are available
upon requests). 

Next, using these new weights, the OV model price volatilities are
recalculated for the first 1000 observations, which are then used to

TABLE 3. Weights Vector for Full Sample

Options Total
Currency (i) Weights corresponding to previous day 1 to day 5 Weight

wi,t-1 wi,t-2 wi,t-3 wi,t-4 wi,t-5

British Call 0.1094 0.1258 0.1182 0.1275 0.1462 0.6271
pound Put 0.0862 0.0639 0.0665 0.0724 0.0839 0.3729

0.1956 0.1897 0.1847 0.1999 0.2301 1.0000

Euro Call 0.0514 0.0030 0.0346 0.0232 0.0425 0.1548
Put 0.1601 0.1687 0.1732 0.1651 0.1782 0.8452

0.2114 0.1717 0.2078 0.1883 0.2207 1.0000

Japanese Call 0.1216 0.1024 0.0947 0.1033 0.0882 0.5102
yen Put 0.1000 0.0873 0.0848 0.0783 0.1393 0.4898

0.2216 0.1897 0.1795 0.1816 0.2275 1.0000

Swiss Call 0.1353 0.1100 0.1113 0.1159 0.1420 0.6144
franc Put 0.0738 0.0789 0.0697 0.0771 0.0862 0.3856

0.2091 0.1888 0.1809 0.1930 0.2281 1.0000

Note:   wi,t-1, wi,t-2, wi,t-3, wi,t-4 and wi,t-5 represent weights corresponding to the previous day
1, day 2, day 3, day 4 and day 5, respectively. 
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generate the forecast values for the remainder of the sample under this
model. Similarly, for IV model (under MEM) and GV model, volatility
points are recalculated for the first 1000 observations, which are then
used to generate the forecast values for the remainder of the sample
under these models. This implies s = 357 for British Pound, Euro and
Swiss Franc and s = 300 for Japanese Yen for purposes of calculating
the forecast criteria. 

The estimated values of OVPE, under MSE as the objective function
are first compared with GVPE, and the results are given in table 5. As
can be seen in the last column, the values of OVPE are systematically
and considerably smaller than those of GVPE by all measures (MSE,
MAE and MAPE). It indicates that the OV model performs better than
the GV model in forecasting option price volatility for all four
currencies. Similar results were observed with MAE and MAPE used
as objective functions (not reported here). 

The out-of-sample performance of OV model is then compared with
that of  IV model under MEM. Table 6 gives the results with MSE as the
objective function. As can be seen, OVPE does extremely well
compared to IVPE with MSE as the test criterion, but the results are
somewhat mixed for MAE and MAPE. Results with MAE and MAPE

TABLE 4. Weights Vector for First 1000 Observations

Options Total
Currency (i) Weights corresponding to previous day 1 to day 5 Weight

wi,t-1 wi,t-2 wi,t-3 wi,t-4 wi,t-5

British Call 0.1312 0.1394 0.1262 0.1388 0.1592 0.6949
pound Put 0.0748 0.0501 0.0523 0.0566 0.0714 0.3051

0.2060 0.1895 0.1785 0.1954 0.2306 1.0000

Euro Call 0.0378 0.0000 0.0213 0.0069 0.0420 0.1081
Put 0.1795 0.1673 0.1903 0.1714 0.1833 0.8919

0.2173 0.1673 0.2116 0.1783 0.2254 1.0000

Japanese Call 0.1072 0.0796 0.0714 0.0743 0.0648 0.3972
yen Put 0.1087 0.1020 0.1015 0.1140 0.1765 0.6028

0.2159 0.1815 0.1729 0.1883 0.2413 1.0000

Swiss Call 0.1419 0.1139 0.1094 0.1148 0.1470 0.6269
franc Put 0.0707 0.0765 0.0616 0.0768 0.0874 0.3731

0.2126 0.1904 0.1710 0.1916 0.2344 1.0000

Note:   wi,t-1, wi,t-2, wi,t-3, wi,t-4 and wi,t-5 represent weights corresponding to the previous day
1, day 2, day 3, day 4 and day 5, respectively. 
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used as objective functions (not reported here) were also very similar.
Overall, OV model tends to outperform the GV and IV models.

IV.  Conclusion

This paper introduces a new approach to computing the volatility
explicitly from the currency options market prices. The idea is to assess 

TABLE 5. Comparison of OVPE and GVPE: Out-of-Sample

Measures Currency Options Model pricing errors and their difference in percentage

OVPE GVPE OVPE–GVPE Average
 %GVPE difference

%

MSE British Call 0.0631 0.1371 –53.98 –54.62
pound Put 0.0711 0.1589 –55.25

Euro Call 0.0520 0.2239 –76.78 –72.30
Put 0.0425 0.1321 –67.83

Japanese Call 0.0252 0.0398 –36.68 –26.31
yen Put 0.0190 0.0226 –15.93

Swiss Call 0.0213 0.0240 –11.25 –16.76
franc Put 0.0192 0.0247 –22.27

MAE British Call 0.6407 3.4086 –81.20 –59.24
pound Put 0.6889 1.0983 –37.28

Euro Call 0.5833 1.3180 –55.74 –50.48
Put 0.5323 0.9717 –45.22

Japanese Call 0.3998 0.5084 –21.36 –4.43
yen Put 0.3215 0.2858 12.49

Swiss Call 0.3713 0.3957 –6.17 –9.06
franc Put 0.3773 0.4285 –11.95

MAPE British Call 0.4388 0.7263 –39.58 –40.05
pound Put 0.4040 0.6791 –40.51

Euro Call 0.4779 1.1239 –57.48 –52.59
Put 0.4741 0.9064 –47.69

Japanese Call 0.4137 0.5434 –23.87 –8.52
yen Put 0.4477 0.4191 6.82

Swiss Call 0.3824 0.4265 –10.34 –13.75
franc Put 0.4783 0.5774 –17.16

Note:  OVPE and IVPE represent optimal weighted volatility model pricing error and
implied volatility model pricing error, respectively. MSE and MAE measures are to be
divided by 1000 and 100, respectively. In the last column, the average negative and positive
differences indicate that OVPE is less than GVPE and OVPE is more than GVPE,
respectively, by reported percent.
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how well the past options market prices would forecast the future ones,
thereby the focus being on the accuracy of the forecasts, rather than on
how forecasts are formed. In this framework (OV model), a process of
an optimal linear combination of past absolute returns is generated by
minimizing different objectives functions (MSE, MAE, MAPE). The
forecast performance of OV model is then compared to that of Engle’s
(2002) multiplicative error model for IV and a GARCH (1,1) model.
Overall, the results indicate that the proposed OV model in this paper is

TABLE 6. Comparison of OVPE and IVPE: Out-of-Sample

Measures Currency Options Model pricing errors and their difference in percentage

OVPE IVPE OVPE–IVPE Average
 %IVPE difference

%

MSE British Call 0.0631 0.4303 –85.34 –85.25
pound Put 0.0711 0.4793 –85.17

Euro Call 0.0520 0.2689 –80.66 –80.49
Put 0.0425 0.2159 –80.31

Japanese Call 0.0252 0.2238 –88.74 –83.11
yen Put 0.0190 0.0844 –77.49

Swiss Call 0.0213 0.1598 –86.67 –84.80
franc Put 0.0192 0.1125 –82.93

MAE British Call 0.6407 0.6108 4.90 2.07
pound Put 0.6889 0.6941 –0.75

Euro Call 0.5833 0.5569 4.74 6.84
Put 0.5323 0.4886 8.94

Japanese Call 0.3998 0.5970 –33.03 –9.91
yen Put 0.3215 0.2840 13.20

Swiss Call 0.3713 0.3779 –1.75 9.00
franc Put 0.3773 0.3151 19.74

MAPE British Call 0.4388 0.3959 10.84 6.08
pound Put 0.4040 0.3987 1.33

Euro Call 0.4779 0.4445 7.51 7.98
Put 0.4741 0.4372 8.44

Japanese Call 0.4137 0.5982 –30.84 –9.14
yen Put 0.4477 0.3977 12.57

Swiss Call 0.3824 0.3865 –1.06 11.15
franc Put 0.4783 0.3877 23.37

Note:  OVPE and IVPE represent optimal weighted volatility model pricing error and
implied volatility model pricing error, respectively. MSE and MAE measures are to be
divided by 1000 and 100, respectively. In the last column, the average negative and positive
differences indicate that OVPE is less than IVPE and OVPE is more than IVPE, respectively,
by reported percent.



207Modeling Volatility in Foreign Currency Option Pricing

capable of producing reasonably accurate forecasts for the put and call
prices. The empirical results of this paper have important implications
for option traders who need to use forecasting model for options
valuation purposes. This paper has provided a general framework that
is computationally less burdensome, and can be easily implemented in
spreadsheet applications. More accurate formulae would require solving
quadratic or higher order algebra equations, for which no simple
closed-form solutions can be obtained. The model proposed in this
paper is simple and robust relative to MEM and GARCH(1,1) for
forecasting option prices. This model is also flexible as it can be
modified to accommodate different objective functions to forecast
future volatility with different option pricing models. In future research,
it will be interesting to compare this approach with other stochastic
models where the implied volatility is updated daily. A related
interesting area will be to compare this approach with the analytical
approximations proposed by Datey (2003) for the computation of Asian
quanto-basket-type option prices. A good estimation of future volatility
surface across strike prices is also another possible area of future
research (see, for example, Klebaner, Le and Lipster, 2006).

Accepted by:  Prof. R. Taffler, Guest Editor, February 2009
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