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This paper presents a general optimization framework to forecast put and
call option pricesby exploiting thevolatility of the optionsprices. Theapproach
is flexible in that different objective functions for predicting the underlying
volatility can be modified and adapted in the proposed framework. The
framework is implemented empirically for four major currencies, including
Euro. Theforecast performance of thisframework iscompared withthose of the
Multiplicative Error Model (MEM) of implied volatility and the GARCH(1,1).
The results indicate that the proposed framework is capable of producing
reasonable accurate forecasts for put and call prices.(JEL: G12, G13)
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[. Introduction

The well-known Black-Scholes (1973) option pricing model (BS)
provides the foundation for pricing of options and derivatives.
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Unfortunately, BS does not evaluate the market’ s expectation of future
volatility, but the expectation can be obtained by inverting the observed
option price. For each observed option price, the implied volatility (1V)
is the volatility implied by the BS option pricing formula given the
observed price. This IV is widely believed to be the market’s best
forecast regarding the future volatility over the remaining life of the
option. However, IV may be a biased representation of market
expectations for the following reasons: (i) transaction prices may not
represent equilibrium market prices; (ii) the option pricing model may
be specified incorrectly; and (iii) asthe volatility of asset returnstends
to change over time, the constant variance assumption may be
unrealistic.

A number of studieshavefocused on the predictive power of V. The
empirical results are at best mixed. Earlier research by Latane and
Rendleman (1976), Schmalensee and Trippi (1978), Chiras and
Manaster (1978), Beckers(1981) indicatethat 1V isabetter predictor of
actual volatility than volatility based on historical data. Lamourex and
Lastrapes (1993) conduct ajoint test of the Hull-White (1987) option
pricing model and market efficiency, and they find that athough IV
helps predict volatility, available information in historical data can be
used to improve the market’s forecasts as measured by V. Day and
Lewis (1992) show that 1V in the equity market contains incremental
information relative to the conditional volatility from GARCH models.
Similar results are also reported in Fleming et al. (1995), Christensen
and Prabhala (1998), Fleming (1998), Bates (2000), and Kazantzis and
Tessaromatis (2001). In contrast, Caninaand Figlewski (1993) find that
IV volatility has little predictive power for future volatility. Jorion
(1995), however, reports that |V outperforms statistical time-series
models in terms of information content and predictive power, but 1V
appears to be too variable relative to future volatility.

Harvey and Whaley (1992), using S& P 100 index option, report that
implied volatility changes can be predicted ahead of time. This study
alsoindicatesthat implied volatilitiestend tofall on Fridaysand riseon
Mondays. Using CBOE Market Volatility Index (VIX), an average of
S& P 100 option implied volatilities, Fleming et al. (1995), however,
rej ectinter-week seasonality. Furthermore, thisstudy indicatesthat V1X
isinversely related to the contemporaneous S& P 100 index return, and
that both daily and weekly VIX changes are more sensitive to the
negative than the positive stock market moves. Simon (1997) also
reports similar implied volatility asymmetries for treasury bonds and
futures options. Ederington and Lee (1996) claim that inter-week
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patterns of implied volatilities may be attributable to market
announcements; they show that the implied volatilities in the treasury
bondsand Eurodollar options on futures contractstend to declineonthe
days with scheduled macroeconomic announcements.

Aswidely known, BSismainly used for valuing options on stocks.
This model has spawned the field of financial engineering, which is
dedicated to designing and implementing such derivatives pricing
models. Has al so found wide applicationsin modeling corporate bonds
and credit spreadsin the presence of default and interest rate risks (see
for arecent application, Belhaj, 2006). For stocks, BS assumes that no
dividends are paid on the stock during the life of the option. This model
is extended by Merton (1973) for continuous dividends. Since the
interest gained on holding a foreign security is equivalent to a
continuously paid dividend on a stock share, the Merton version of the
BS can be applied to foreign security. To value currency option, stock
prices are substituted for exchange rates.

The first application of modern valuation techniques to currency
options is generally credited to Grabbe (1983) and Garman and
Kohlhagan (1983). They considered foreign currency as an asset and
expected returns from holding foreign currency would depend on the
volatility of exchangerateintheir model. The practical relevance of this
model as an approximate currency options pricing formula depends on
the investor’s ability to forecast exchange rate variability over the
remaining life of the option. The model is however, based on several
standard assumptions.

This paper provides a new approach to measuring volatility of
currency options prices explicitly from their past history. A general
optimization framework is proposed to forecast put and call option
prices by constructing optimal volatility forecasts based on past
information. The volatility is calculated asthe weighted sum of the past
squared returns by minimizing the in-sample mean squared errors
between market and model prices. Thefuture pricesare predicted using
theBSoption pricing model giventhevolatility forecasts. Theobjective
isto assess how well the past options market prices would forecast the
future ones. The emphasisis on assessing the accuracy of the forecasts,
rather than on how forecasts are formed.

The paper has several attractive features. First, unlike other
approaches in the literature, this paper is concerned with modeling
volatility as an instrument to predict future option prices, rather as a
measure of risk. Second, this paper proposes a general framework to
forecast future option prices. This framework is flexible as it can be



192 Multinational Finance Journal

modified to accommodate different objective functions to forecast
futurevolatility with different option pricingmodels. Thirdly, thispaper
uses the past option prices, rather than the underlying currency prices,
to calculate volatility. Although options derive their values from the
underlying currencies, spot and options markets are treated as separate
entities in this framework. Thisis anew ideain the options literature.
Finally, unlike the majority of work focusing on stocks and bonds
options, the current paper focuses on options on major currencies,
including Euro.

The paper is organized as follows. The next section gives the
analytical framework and the data used in this study, followed by the
empirical resultsin sectionsI1. The last section concludes the paper.

II. Methodology and Data

The framework proposed in this paper can be summarized in the
following steps. The first step involves selecting a pricing model to
generate future prices. Unless otherwise stated, the pricing model
chosen in this paper is the BS option pricing model. Although the
constant variance assumption underlying the BS seems restrictive in
practice, it is not necessarily the case. It is highly possible that the
varianceisconstant over ashort timeinterval but it istime varying over
alonger time horizon. In such acase, the BSisavalid model over each
of the short time intervals. This paper assumes that the variance of the
underlying asset’ s return may be constant within a short time interval
(one day) but changing from one interval to another, that is, variance
changes on the daily basis but constant within the day. The implication
of this assumption is that 1V derived from the BS of a particular day
would be a reasonable approximation of the true underlying volatility
for that day.

In theory, if 1V can be predicted ahead of time with reasonable
accuracy, then these volatility forecasts can be used asinputsto the BS
option pricing formulato forecast future call and put prices. Thisisthe
second step of the proposed framework. Given the pricing formula,
volatility could be predicted as a weighted average of the past squared
returns, with weights calculated by optimizing appropriate objective
functions. The above idea can be implemented as a simple
spreadsheet-based application, and we name it as optimal weighted
volatility (OV) model. In this approach, the volatility is modeled as a
linear combination of the past squared returns from the observed put



Modeling Volatility in Foreign Currency Option Pricing 193

and call prices, withweightscal cul ated by minimizing agiven objective
function. Thisapproach also describesthe pattern of thevolatility which
contains important information about investors behavior over time.
Finally, the forecast performance of BS option pricing formula using
QV is compared with aternative volatility models including the
Multiplicative Error Model (MEM) of IV and GARCH(1,1) model of
past squared returns. If OV provides superior volatility measures for
predicting future prices, then this approach will be an innovative way
to identify the underlying process of valuing currency options. In what
follows, we describe the detail s of this methodol ogy, and the following
notations are used throughout the paper:

S spot exchange rate at timet;
T expiration time of the option;
C, market price of acall option in domestic currency at timet;
P market price of aput option in domestic currency at timet;

X, option exercise price in domestic currency at timet;

Rdr continuously compounded rate of return on risk-free
domestic interest rate with the maturity at time z;

R'z  continuously compounded rate of return on risk-free
foreign interest rate with the maturity at time z;

N cumulative normal distribution function;

o, voldility of the exchange rate at timet.

Following Biger and Hull (1983), the price of aEuropean call option on
currency is,

C = Se_PJrN (dt,l)_ Xte_RdrN (dt,Z) = C(S1Xt'Rd ) Rf 'T1O_t)1 (1
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and similarly, the price of a European put option on currency is stated
as!
— fZ' — dl’
P=-Se*" N(—dlyt)+ X.e"R N(_dZ,t) (2

= p(S. X.R,R" 7,01,
where,
g -M(S/X)+R' -R'+050{r
1t~ ’
' Gt\/;

and
d, =d;, — Gt\/;.

Equations (1) and (2) are standard, and they state that the option
premiumisthe present value of the difference between two cumulative
density functions, d, and d,. These two equations are used in this paper
with different volatility measures to generate forecasts for call and put
prices. For notation convenience, define

& = Seipt o= Xt973 5
so that equations (1) and (2) can be rewritten as
Ct Zé:tN(dl,t)_ﬂtN(dz,t)' (3)

R ZUtN(_dz,t)_éN(_st)- 4

Note that in equations (3) and (4), al parameters except the volatility
are directly observable from market data. This allows a market-based
estimate of volatility of aforeign security. A variety of methods can be
applied to estimate the volatility and most researchers use the implied
standard deviation (ISD) from option market price as the current
estimate of IV. Let v;, and V2, denotethe 1V at timet for put and call
option, respectively, which satisfies the following equations

() =o(SXRR Ve ) -G =0,



Modeling Volatility in Foreign Currency Option Pricing 195

g(VP,t): p(S'XanRf'T,Vp,t)—R=0- (6)

If put-call parity holds, then vy, = v¢,= V,. Given both f (v.,) and g (Vs,)
are highly non-linear functions, the calcul ation of IV requires numerical
procedures such asthe Newton-Raphson method. In thispaper, ahybrid
of Newton-Raphson and Bisection methods are used to calculate 1V.
Thisprocedureisastandard iterative technique based on thefirst order
Taylor expansion of the function.

After the calculation of 1V, the next step is to forecast future
volatility based on this information. One way is to estimate the
following model for v, i = C,P.

Vi =&, §,~iid(Lv), &,>0 i=C,P.
hz,t = +aiviz,t—1+ﬂih2,t—l w,a,>0.

This specification implies that the IV follows a Multiplicative Error
Model (MEM) as proposed in Engle (2002). A sufficient condition to
ensure the positivity of h; isto restrict all the parametersin the model,
namely, w, a and f to be positive. Given the past information and the
parameter estimates, the conditional volatility is estimated by

v = h,t (7)

fori =C,Pandhence, theimplied volatility model price(IVP) for calls (C )
and puts (R"') can be generated by

C" ZC(SuxtiRdin’T'ﬁc,t) ©)

RY =p(S.X.RLR 7.7, ), 9)

It is to be noted that in the MEM presentation as above, the noise
sequence {¢;,: t € N} is a collection of independently and identically
distributed (iid) random variableswith positive support, that is, P(e;  <0)
=0, to ensure that the conditional standard deviation, h; , to be positive
for all i and t. Given the actual distribution of ¢, is generally unknown,
this paper estimates the parameters in the MEM using the
Quasi-Maximum Likelihood Estimator (QMLE) with log-normal
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density, that is, the estimates are obtained by maximizing the
log-likelihood function with the log-normal density. The statistical
properties of this approach can be found in Allen, Chan, McAleer and
Peiris (2008).

Another way to forecast volatility isto assumethat the return of the
prices, r;, for i = C, P, follow a GARCH(1,1) process. Let C" and
P"" denote the call and put observed prices, respectively, at time, t.
The returns are then calculated as

., =log(if"")-log(i"f), i=C,P,
wherer;, is assumed to follow a GARCH(1,1) process, that is,

he=#+5,9, K,~id01) i=CP
giz,t =4 +7iri,2t—1+5igiz,t—1 4,7,6 >0.

Given this specification, thefuture GARCH (1,1)-based volatility (GV)
for both put and call prices are estimated by

6 i(,stv =0, (10)

for i = C, P. Although this specification is very similar to the MEM
approach as discussed above, the underlying assumptions are quite
different. The MEM specification aims to model the volatility and not
thereturn, and consequently, theindependent and identical ly distributed
random variable, ¢;,, needs to be positive as mentioned above. In the
GARCH(1,1) specification, the endogenous variableisthe price return
which can be positive or negative and hence, the iid random variable,
K, Can be any rea number. However, since g, represents the
conditional variance of the price return in this case, a sufficient
condition to ensure the positivity of g;, isto restrict all the parameters
in the conditional variance equation, namely, 4, y; J; to be positive.
Sincethedistribution of «;  is generally unknown, the parametersin the
GARCH(1,1) model are estimated by QMLE with normal density. The
statistical properties of the QMLE for GARCH process can befound in
Ling and McAleer (2003).

Using the estimated GV, 67, , the GARCH (1,1)-based volatility
model price (GVP) for calls C®¥ and puts R®" can be generated as



Modeling Volatility in Foreign Currency Option Pricing 197
ey d pof ~AGV
G =C($1Xt1R R ’T'O-C,t)’ (11)

R® =p(S.X.R"R",7,65, ) (12)

Further to the above two approaches, it is also possible to utilize the
past information from both put and call prices directly to forecast the
conditional volatility for the purposes of predicting the future prices of
both put and call options. Weintroducethis new ideawhereby previous
returns of the option prices are utilized and selected as optimal linear
combinations of previous absolute returns. The optimal combinations
are then used as inputs to the BS option pricing formula as defined in
equations (1) and (2) to predict future option prices. For identification
purposes, theterm OVisused tolabel the conditional volatility obtained
in thisway. The dynamics of the volatility is assumed to be

A0V
t

=W'l, (13)
where W'=(W,..,W,)", W e[01] i=1.q,suchthat, > ' w=1,
o=Vt s Toeah ot s Tpm|) » SO that | + m = q. To make
equation (13) operational, denote OV model prices for put and call by
P and C° , respectively and let P, and C, denotethe observed prices
for put and call options at timet, respectively. Note that both P®Y and
C> arefunctionsof 6°" , which dependson theweight vector w. This
w vector is abtained by minimizing the with-in-sample mean squared
error (MSE) betweeni,and i ,i=C, P

w=mi nT‘li[(F{ -R)+(C-c¥) | (14)

This is a nonlinear optimization problem and does not have a
closed-form solution. It can only be solved by numerical methods.
Unless otherwise stated, all the optimal weights presented in this paper
were obtained by usingthe“ solver” functionin Microsoft Excel®. This
procedure has the added advantage that the optimal weights can be
calculated without using specialized optimization or statistical software.

Apart fromM SE, other objectivefunctions can al so be used to sel ect
the optimal weight. For example, the mean absolute error (MAE)
between i"” and i®" can be a more appropriate choice if there are
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excessive amount of outliersand extreme observationsinthesample. In
that case, the optimal weight is chosen by solving the following
minimization problem:

w= minT’liDPt -R¥|+lc, -] (15)
[0} =1

Similarly, themean absol ute percentage error (MAPE) between i and
i can also be used, in which case the optimal weight is chosen by
solving:

+ (16)

;
W= minT‘lz{
@ t=1

R¥-R
R

t

CtOV _ Ct ‘
C .

t

It is to be noted that the optimal weight vector (w) is assumed to be
constant over time.

Next, the optimal-weighted volatility model pricesfor calls (C°)
and puts ( P°" ) are generated by

CtovZC(thtiRdiRtf’T'&tov)’ (17)

R% = p(S.X,.R\.R",z,6%), (18)

where, 6" ,isafunction of the past information provided by both call

and put prices. In implementing this procedure, our data on calls and
puts have the same time to maturity. However, they do not have the
same moneyness;, whenacall isin ITM, the corresponding putisOTM,
asthecall-put pairshavethe samestrike prices. Unlessotherwisestated,
the solutions to the optimization problem as stated in equations (14) to
(16) are obtained by using the Solver™ application in Microsoft
Excel™ with the default Newton algorithm. Thus, this analysis can be
conducted without any additional programming and it would be more
suitable as a practical application.

We compute in-sample pricing errors to check for goodness-of-fit,
and out-of-sampl e pricing errorsto check for predictive power. Pricing
error is defined as the deviation of model price from the observed
market price. Theforecast performances of the modelscan be evaluated
by the following conventional criteria
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The mean squared error (MSE) = ii(it —i] )2,

t=1

The mean absolute error (MAE) = iZit —i]
t=1

It It
[

The mean absolute percentage error (MAPE) = i Z
t=1

t

fori=C,Pandj =1V, GV, OV. While MSE isthe most commonly used
criterion to evaluate forecast errors, it has the well-known problem of
penalizing large errors disproportionately. This can result in biasesin
conclusions if a sample contains excessive amount of outliers and
extreme observations. Therefore, the two other aternative criteria can
be used to provide amore general view about theforecast performances
of each model. The estimated errors are labeled as IVPE, GVPE and
OV PE for the three model s, respectively. We now proceed to apply the
foregoing methodol ogy to the data.

A. The Data

The data used in this paper are for the following four currency options
—the British pound, the Euro, the Japanese yen, and the Swissfranc. All
data are obtained from DATASTREAM database, and provided in a
separate appendix availableon request. Thedataconsist of daily closing
prices for each option traded on the PHL X, daily spot exchange rates,
and daily Eurocurrency interest rates for the period. Option on Euro
started trading December 2000. The data set for all currencies,
therefore, includes the options trading period from January 2001 to
March 2006. There are some inconsistent data (due to recording error
in the database) for the Japanese yen from January 2001 to end of
March 2001 and consequently, these are excluded from the sample.

The total number of daily observations is 1359 for British Pound,
Euro and Swiss Franc and 1300 for Japanese Y en, making a total of
5377 pairs of put-call option pricesin our sample. The expiration dates
of optionsarewithin 90 days during the sample period. If the expiration
month has 5 Fridays, the options expire on the third Friday, otherwise
second Friday of the expiration month. The Eurocurrency interest rates
are used to determine daily domestic and foreign bond prices,
respectively.

For abird’ s view, table 1 provides the descriptive statistics of the
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TABLE 1. Descriptive Statistics

Currency Statistics Call Put Variables Spot Interest
price price  Strike price rate rate
British Mean 1.40 1.74 165.06 1.65 4.39
pound Median 141 1.68 164.00 1.64 4.42
Skewness 0.01 0.55 -0.02 -0.02 -0.37
Kurtosis 3.37 3.38 157 157 2.66

JB 7.90* 77.04* 11549*  115.18*  38.02*
Euro Mean 1.19 134 109.71 1.09 3.00
Median 1.22 1.28 115.00 1.15 2.69
Skewness -0.09 3.69 -0.23 -0.23 0.68
Kurtosis 3.28 37.66 158 1.58 2.05

JB 6.69* 71102.44* 126.47*  126.61* 154.45*
Swiss Mean 1.01 0.83 73.77 0.72 1.55
franc Median 091 0.81 73.50 0.75 1.22
Skewness 25.75 0.54 24.66 -0.31 0.83
Kurtosis ~ 669.29 4.19 631.39 181 235

JB  25288077*  147.41* 22497256* 102.17*  181.44*

Japanese Mean 1.03 0.87 86.67 0.01 0.24
yen Median 0.98 0.81 85.5 0.01 0.21
Skewness 1.87 2.78 -0.04 0.03 1.38
Kurtosis 11.49 26.26 2.12 2.18 5.26

JB  4876.89* 32393.99* 43.38* 37.94* 719.18*
u.s. Mean 291
dollar Median 2.88
Skewness 0.12
Kurtosis 1.76

JB 90.66*

Note: The Jarque-Bera (JB) statistic follows a chi-square distribution with 2 degree of
freedom. The critical value of the chi-square distribution is 5.99 at the 5% level of
significance. The statistical significance level at 5% is denoted by *.

data. Ascan be seen, for most of the data series, the mean and median
values are very close and the skewness is nearly zero. However, the
Jarque-Bera (JB) test rejectsthe null of normality which meansthe data
was unlikely to be drawn from a normal distribution.

[11. Empirical Results

In this section we provide the empirical results based on the analytical
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framework discussed in the previous section. More specifically, to
forecast the volatility inputs for call and put options, we estimate (i)
option pricesbased on IV model, using equations (8) and (9), (ii) option
prices based on return GARCH(1,1) model, using equations (11) and
(12), and (iii) option prices based on OV model, using equation (13)
under alternative weighting schemes. The in-sample results are first
discussed, followed by the out-of-sampl e results.

A. In-sample Fit

For in-sample tests, the implied volatility model pricing error (IVPE)
and optimal weighted volatility model pricing error (OVPE) are
estimated under thethreecriteria, namely, MSE, MAE and MAPE. Note
that OV PE can be obtained under alternative weighting schemes [see
equations (14)-(16)]. The results with MSE as the objective function
(for weights), are given in table 2. As can be seen, based on the MSE
criterion, the OV model outperformsthe IV model option pricesfor all
four currencies. Under MSE, OVPE isless than IVPE, on average, by
70.55 percent for British pound, 52.91 percent for Euro, 70.95 percent
for Japanese yen and 67.23 percent for Swissfranc. It indicatesthat OV
model pricesfit the in-sample market prices better than those from the
IV model. However, the MAE and MAPE results in table 2 are not
favorable to OV model. These two measures indicate that 1V model
tendsto do better than the OV model. Interestingly, very similar results
were observed when MAE and M A PE were used as objectivefunctions,
respectively (results not reported here, for brevity).

As the OVPE resultsin table 2 are based on weights that capture
randominformation from past options prices, wenow explorethenature
of these weights for each currency over the previous five trading days.
The observed weights, under M SE as the objective function, are given
in table 3. As can be seen from the last column of the table, over a
five-day window, the weights tend to be somewhat evenly distributed
across the previous five trading days. However, total weights of call
prices are higher than the total weights of put prices for British pound
and Swissfranc. For Euro, thetotal weightsof put pricesare higher than
the total weights of call prices, and somewhat evenly distributed for
Japanese yen between calls and puts. Thus, these weights do not seem
to follow any systematic pattern across currencies. However, it isto be
noted that the options on al four sample currencies are traded against
the U.S. dollar inthe U.S. market. Since the trading volume influences
volatility, the relatively higher weights of call price volatility may
indicate that trading volume of call options on British pound and Swiss
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TABLE 2. Comparison of OVPE and IVPE: In-Sample

Measures Currency Options Model pricing errorsand their differencein percentage

OVPE IVPE OVPE-IVPE  Average
IVPE % difference
%

MSE British ~ Cal  0.0804 0.2322 —65.37 —70.55
pound Put  0.1050 0.4327 —75.73

Ewo  Cdl 00813 0.1655 -50.88 5291
Put  0.1107 0.2457 —54.95

Japanese  Cal  0.0396 0.1485 —73.33 —70.95
yen Put  0.0314 0.0999 —68.57

Swiss  Cdl 00368 0.0979 —62.41 —67.23
franc Put  0.0298 0.1066 —72.05

MAE British ~ Cal  0.6977 0.3556 96.20 84.16
pound Put  0.7916 0.4599 72.12

Ewo  Cdl  0.6639 0.3267 103.21 100.26
Put  0.7452 0.3777 97.30

Japanese  Call  0.4585 0.3572 28.36 39.23
yen Put  0.4473 0.2980 50.10

Swiss  Cdl 04345 0.2848 52.56 67.56
franc Put  0.4283 0.2346 82.57

MAPE  British  Cal  0.6149 0.2639 133.00 110.44
pound Put  0.4864 0.2589 87.87

Ewo  Cdl 07082 0.3291 115.19 117.12
Put  0.6350 0.2899 119.04

Japanese  Cal  0.4436 0.3975 11.60 27.19
yen Put  0.4943 0.3462 42.78

Swiss  Cdl 05224 0.3265 60.00 65.67
franc Put  0.5087 0.2969 71.34

Note: OVPE and IVPE represent optimal weighted volatility model pricing error and
implied volatility model pricing error, respectively. MSE and MAE measures are to be
divided by 1000 and 100, respectively. In thelast column, the average negative and positive
differencesindicatethat OVPE islessthan 1V PE and OV PE ismorethan IV PE, respectively,
by reported percent.

franc has been higher than that of put options. Thismight imply that the
U.S. market is a net importer in British pound and Swiss franc
denominated goods and services over the sample period. Similarly,
higher weights of put price volatility may indicate that the U.S. market
is anet exporter in Euro denominated goods and services. With MAE
and MAPE as objective functions, very similar results were observed
(results not reported here), implying that the weight function does not
seem to be sensitive to the choice of the objective function.



Modeling Volatility in Foreign Currency Option Pricing 203

TABLE 3. Weights Vector for Full Sample
Options Total
Currency 0] Weights corresponding to previousday 1today 5  Weight
Wi 1 Wi t-2 Wit-3 Wi t-4 Wits

British Call 0.1094 01258 0.1182 0.1275 0.1462 0.6271

pound Put 0.0862 0.0639 0.0665 0.0724 0.0839 0.3729

0.1956 0.1897 0.1847 0.1999 0.2301  1.0000

Euro Cal 0.0514 0.0030 0.0346 0.0232 00425 0.1548

Put 0.1601 0.1687 0.1732 0.1651 0.1782  0.8452

0.2114 0.1717 02078 0.1883 0.2207  1.0000

Japanese  Cdl 0.1216  0.1024 0.0947 0.1033 0.0882 0.5102

yen Put 0.1000 0.0873 0.0848 0.0783 0.1393 0.4898

02216 0.1897 0.1795 0.1816 0.2275  1.0000

Swiss Cal 0.1353 0.1100 0.1113 0.1159 0.1420 0.6144

franc Put 0.0738 0.0789 0.0697 0.0771 0.0862 0.3856

02091 0.1888 0.1809 0.1930 0.2281  1.0000

Note: W1, Wi o, Wi .3 W, ., aNA W, 5 represent wei ghts corresponding to the previous day
1, day 2, day 3, day 4 and day 5, respectively.

B. Out-of-sample Fit

In-sample results, in general, indicate that OV model outperforms 1V
model for pricing options under the M SE criterion. One may, however,
arguethat the OV model pricesfit in-sample better dueto the additional
explanatory power from higher degrees of freedom. As a check, the
out-of-sample predictive power of the OV model is how examined in
what follows. For this purpose, the predictive power of OV model is
assessed against GV model, and the 1V model under MEM.

Totest the out-of-samplefit of the OV model, the weights (reported
in table 3) need to be recalculated by using equations (14). Using the
first 1000 observations, the estimated weights under M SE as objective
function are presented in table 4. As can be seen, the weighing patterns
are qualitatively similar to those in the table 3 for the full sample.
Overall, the weights estimated from the first 1000 observations to
forecast options prices for out-of-sample test are fairly similar to the
weights estimated from the full sample. Thisalso holdswhen MAE and
MAPE were used as objective functions (the estimates are available
upon requests).

Next, using these new weights, the OV model price volatilities are
recalculated for the first 1000 observations, which are then used to
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TABLE 4. WeightsVector for First 1000 Observations

Options Total
Currency 0] Weights corresponding to previousday 1today 5  Weight
W1 W2 Wits Wita Wis
British Call 0.1312 0.1394 0.1262 0.1388 0.1592 0.6949
pound Put 0.0748 0.0501 0.0523 0.0566 0.0714 0.3051

0.2060 0.1895 0.1785 0.1954 0.2306  1.0000

Euro Call 0.0378 0.0000 0.0213 0.0069 0.0420 0.1081
Put 01795 0.1673 0.1903 0.1714 0.1833 0.8919
02173 01673 0.2116 0.1783 0.2254  1.0000

Japanese  Call 0.1072 0.0796 0.0714 0.0743 0.0648 0.3972
yen Put 0.1087 0.1020 0.1015 0.1140 0.1765 0.6028
0.2159 01815 01729 0.1883 0.2413  1.0000

Swiss Cal 0.1419 01139 0.1094 0.1148 0.1470 0.6269
franc Put 0.0707 0.0765 0.0616 0.0768 0.0874 0.3731
02126 0.1904 01710 0.1916 0.2344  1.0000

Note: W ;, W, W3 W, andw, 5 represent weights corresponding to the previous day
1, day 2, day 3, day 4 and day 5, respectively.

generate the forecast values for the remainder of the sample under this
model. Similarly, for IV model (under MEM) and GV model, volatility
points are recalculated for the first 1000 observations, which are then
used to generate the forecast values for the remainder of the sample
under these models. Thisimplies s =357 for British Pound, Euro and
Swiss Franc and s = 300 for Japanese Y en for purposes of calculating
the forecast criteria.

Theestimated valuesof OV PE, under M SE asthe objectivefunction
arefirst compared with GV PE, and the results are given in table 5. As
can be seen in the last column, the values of OV PE are systematically
and considerably smaller than those of GVPE by all measures (M SE,
MAE and MAPE). It indicates that the OV model performs better than
the GV model in forecasting option price volatility for al four
currencies. Similar results were observed with MAE and MAPE used
as objective functions (not reported here).

The out-of-sampl e performance of OV model isthen compared with
that of IV model under MEM. Table 6 givestheresultswith M SE asthe
objective function. As can be seen, OVPE does extremely well
compared to IVPE with MSE as the test criterion, but the results are
somewhat mixed for MAE and MAPE. Results with MAE and MAPE



Modeling Volatility in Foreign Currency Option Pricing 205

TABLE 5. Comparison of OVPE and GVPE: Out-of-Sample

Measures Currency Options Model pricing errorsand their differencein percentage

OVPE GVPE OVPE-GVPE  Average
GVPE % difference
%
MSE British  Cal  0.0631 0.1371 _53.98 —54.62
pound Put 00711 0.1589 _55.25
Ewo  Cdl 00520 0.2239 —76.78 —72.30
Put  0.0425 0.1321 —67.83
Japanese  Cal  0.0252 0.0398 ~36.68 2631
yen Put  0.0190 0.0226 ~15.93
Swiss  Cdl 00213 0.0240 ~11.25 ~16.76
franc Put  0.0192 0.0247 2227
MAE British  Cal  0.6407 3.4086 -81.20 —59.24
pound Put  0.6889 1.0983 —37.28
Ewo  Cdl 05833 1.3180 _55.74 -50.48
Put 05323 0.9717 4522
Japanese  Cal  0.3998 0.5084 2136 —4.43
yen Put  0.3215 0.2858 12.49
Swiss Cdl 03713 0.3957 617 —9.06
franc Put  0.3773 0.4285 ~11.95
MAPE  British  Cal  0.4388 0.7263 ~39.58 —40.05
pound Put  0.4040 0.6791 —40.51
Ewo  Cdl 04779 1.1239 _57.48 5259
Put 04741 0.9064 —47.69
Japanese  Cal  0.4137 0.5434 —23.87 852
yen Put  0.4477 0.4191 6.82
Swiss  Cdl 03824 0.4265 ~10.34 1375
franc Put 04783 0.5774 ~17.16

Note: OVPE and IVPE represent optimal weighted volatility model pricing error and
implied volatility model pricing error, respectively. MSE and MAE measures are to be
divided by 1000 and 100, respectively. In thelast column, the average negative and positive
differences indicate that OVPE is less than GVPE and OVPE is more than GVPE,
respectively, by reported percent.

used as objective functions (not reported here) were also very similar.
Overal, OV model tends to outperform the GV and IV models.

V. Conclusion

This paper introduces a new approach to computing the volatility
explicitly fromthe currency optionsmarket prices. Theideaisto assess
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TABLE 6. Comparison of OVPE and | VPE: Out-of-Sample

Measures Currency Options Model pricing errorsand their differencein percentage

OVPE IVPE  OVPE-IVPE  Average
IVPE % difference
%

MSE British  Cal  0.0631 0.4303 -85.34 —85.25
pound Put 00711 0.4793 _85.17

Ewo  Cdl 00520 0.2689 -80.66 -80.49
Put  0.0425 0.2159 -80.31

Japanese Cal  0.0252 0.2238 —88.74 —83.11
yen Put  0.0190 0.0844 —77.49

Swiss  Cdl 00213 0.1598 -86.67 -84.80
franc Put  0.0192 0.1125 -82.93

MAE British  Cal  0.6407 0.6108 4.90 2,07
pound Put  0.6889 0.6941 0.75

Ewo  Cdl 05833 0.5569 474 6.84
Put 05323 0.4886 8.94

Japanese  Call  0.3998 0.5970 ~33.03 991
yen Put  0.3215 0.2840 13.20

Swiss Cdl 03713 0.3779 175 9.00
franc Put  0.3773 0.3151 19.74

MAPE  British  Cal  0.4388 0.3959 10.84 6.08
pound Put  0.4040 0.3987 133

Ewo  Cdl 04779 0.4445 751 7.98
Put  0.4741 0.4372 8.44

Japanese  Cal  0.4137 0.5982 ~30.84 —9.14
yen Put  0.4477 0.3977 1257

Swiss  Cdl  0.3824 0.3865 ~1.06 11.15
franc Put 04783 0.3877 23.37

Note: OVPE and IVPE represent optimal weighted volatility model pricing error and
implied volatility model pricing error, respectively. MSE and MAE measures are to be
divided by 1000 and 100, respectively. In thelast column, the average negative and positive
differencesindicatethat OVPE islessthan |V PE and OV PE ismorethan IV PE, respectively,
by reported percent.

how well the past options market priceswould forecast the future ones,
thereby the focus being on the accuracy of the forecasts, rather than on
how forecasts are formed. In this framework (OV model), a process of
an optimal linear combination of past absolute returnsis generated by
minimizing different objectives functions (MSE, MAE, MAPE). The
forecast performance of OV model is then compared to that of Engle’s
(2002) multiplicative error model for IV and a GARCH (1,1) model.
Overall, theresultsindicate that the proposed OV model inthis paper is
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capable of producing reasonably accurate forecasts for the put and call
prices. The empirical results of this paper have important implications
for option traders who need to use forecasting model for options
valuation purposes. This paper has provided a general framework that
is computationally less burdensome, and can be easily implemented in
spreadsheet applications. M oreaccurateformul aewoul d require solving
guadratic or higher order algebra equations, for which no simple
closed-form solutions can be obtained. The model proposed in this
paper is simple and robust relative to MEM and GARCH(1,1) for
forecasting option prices. This model is aso flexible as it can be
modified to accommodate different objective functions to forecast
futurevolatility with different option pricing models. Infutureresearch,
it will be interesting to compare this approach with other stochastic
models where the implied volatility is updated daily. A related
interesting area will be to compare this approach with the analytical
approximations proposed by Datey (2003) for the computation of Asian
guanto-basket-type option prices. A good estimation of futurevolatility
surface across strike prices is also another possible area of future
research (see, for example, Klebaner, Le and Lipster, 2006).
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