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The Amin/Bodurtha framework was developed for the valuation of
American-style financial instruments driven by three sources of uncertainty—
domesticinterest raterisk, foreign interest rate risk and exchange raterisk. The
model isnot only appropriate for pricing anumber of financial derivatives, but
also, aswe show, for valuing foreign investment projectsin the presence of real
options. In this paper we propose the most natural directly implementable
specification within the Amin/Bodurtha framework that permits all
combinations of up and down moves of these three risk factors without
restricting volatility functions of the factors or correlations between them. By
use of the depth-first algorithm, we can show that this specification is
implementable at reasonable computation times (JEL: G13, G31, F30).
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|. Introduction

Timing decisionsin amultinational context, i.e., timing decisions that
depend on interest rates in two different countries (to be more precise:
currency areas) and on the exchange rate between the two currencies,
appear in several forms.
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Onetype of these timing decisionsisthe optimal exercise policy of
American-style financial instruments that are derivatives on two term
structures of interest rates and the respective exchange rate. Thereisa
large number of such instruments including currency swap options
(options to buy/sell a currency swap), currency warrants (long-term
options on currencies), currency exchange warrants (American-style
warrantsgranting acash payment if the spot ratein aspecified currency
exceeds some strike rate) and (rate) differential or cross-rate swaps
exchanging interest and principal in one currency for interest and
principal in another currency at a conversion rate fixed at the contract
date. Furthermore, American-style interest rate derivatives written on
two term structures (i.e., cross-currency caps or floors setting a cap or
afloor on the spread between two reference interest rates denominated
in different currencies) and severa types of structured bonds, like
callable currency-linked bonds, the returns of which are determined by
changes in exchange rates and interest rates in different countries, can
be included here.

Theother field wheretiming decisionsin amultinational context are
increasingly important is real options in a multinational setting. Real
options refer to the freedom of an entrepreneur to take decisions
affecting the value of aproject based on changesin the environment. In
a domestic (one country/currency) environment, the real options
technique has assumed a prominent role over the last decades (see, e.q.,
Dixit and Pindyck [1994] for a detailed overview). Recent literature
indicates that the concept of real options is becoming more and more
significant also from a macro-economic point of view (see, eg.,
Emmons and Schmid [2004] or Dapena [2006]).

One essential type of real options are timing options. They are by
definition American-style, such that they can be exercised at any time
during the “life” of the project, or Bermudan, i.e., can be exercised at
multiple discrete points in time. Timing options in a domestic context
are covered by literaturein detail: E.g., McDonald and Siegel (1986) or
Ingersoll and Ross (1992) analyze the optimal timing of an investment
(“waitingtoinvest” problem). Dixit (1989) analysesthe optimal timing
of both market entry and market exit. McDonald and Siegel (1985)
investigate the option to shut down, i.e., the optimal exit time. Another
typical timing option is the optimal timing of an expansion. Also,
Fruhwirth (2002) investigates a timing decision related to specific tax
systems.

In the course of globalization both the number and the importance
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of multinational corporations, foreign direct investments and cross-
country mergersand acquisitionshavesignificantly increased (see Clark
and Tunaru [2001], Kim, Lyn and Zychowicz [2003], Dunning and
Narula[2004], Bernard, Jensen and Schott [2005], Castellani and Zanfei
[2006] and Jain and Vachani [2006]). This also results in a growing
significance of real options in an international context (see, e.g.,
Kenneally and Lichtenstein [2002], Rugman and Li [2005] or Driouchi,
Battisti and Bennet [2006]). By this, the valuation of multinational
timing options becomesimportant, both from a company’ s perspective
and fromapolitical economy perspective (see, e.g., Darby et al.[1999]).
For instance, foreign direct investmentsinvolvetheflexibility to choose
the timing of investment which requires dealing with the evolution of
the domesticterm structure, theforeign term structure and the exchange
rate. Similarly, the option to abandon or the option to expand aforeign
direct investment depend on thesethreerisk sources. Finally, switching
options between production in different countries and other forms of
operational flexibility of multinational corporations involve
multinational timing decisions.

Thus, timing decisionsin amultinational context, both with respect
tofinancial derivatives and with respect to real options, require explicit
modeling of theinterest rate environment in (at | east) two countriesand
the respective exchange rate. For the valuation of interest rate and
exchangeratefinancial derivativessevera model shave been devel oped
over thelast three decades: The model srange from modifications of the
Black/Scholes model (see Garman and Kohlhagen [1983]) to more
sophisticated models that include interest rate risk in two different
countries/currencies and exchange rate risk (see Grabbe [1983],
Hilliard, Madura and Tucker [1991], Amin and Jarrow [1991] and
Ekvall, Jennergren and N&slund [1997]). The models cited above,
however, can only be used to value European-style derivatives and are
therefore not appropriate for timing decisions.*

In order to value American-style financial derivatives subject to

1. Using these continuous-time models for the valuation of timing decisions and
American-style or Bermudan claims would only be possible in combination with finite
differences, Greens functions, or Monte Carlo Simulations (see Longstaff and Schwartz
[2001]). Those methods, however, also have drawbacks: Greens functions are notoriously
hard to find. Finite differences become computationally infeasible when applied to multi-
factor models. TheLongstaff/Schwartz simul ation al gorithm causes problemsintheval uation
of out-of-money options. In addition, when using di screti sation schemes for continuous-time
no-arbitrage models one has to be careful not to introduce arbitrage opportunities (see
Glasserman and Zhao [2000]).
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domestic term structure risk, foreign term structure risk and exchange
rate risk, Amin and Bodurtha (1995) introduce a framework, the
strength of which is its very general and broad nature leaving much
freedom in specification and implementation. Neither the distributions
of interest rates and exchange rates nor the structure of the tree are
restricted in the framework.?

In this paper, wefirst show how the Amin/Bodurthaframework can
be used not only in connection with financial derivatives but also for
real options in a multinational context. Then, we present the most
natural specification within the Amin/Bodurtha framework. This
specification, in contrast to the formulations existing in literature,
permits all combinations of the three factors under consideration and
preserves the flexibility in the volatility functions and correlations
driving the interest rate and exchange rate dynamics. For this
specification we explicitly derive the one-period drift rates for the
domesticinterest rates, foreign interest rates and exchangerates and we
propose an a gorithm to implement the model. The use of the depth first
a gorithm, by economizing on computer memory and thereby increasing
the number of possible time steps, enables us to implement this
specification with modest computing power.

The paper is structured as follows: section |1 presents the general
Aminand Bodurtha (1995) framework without fixing a specification of
the model. Section I11 matches the two types of timing decisionsin a
multinational context (American-style financial derivatives on the one
hand and multinational real options on the other hand) to this
framework and explicitly derives the payoffs for a few examples.
Section IV dealswith the implementation of the model, presenting our
specification, comparing it with the existing specifications and
presenting the depth-first algorithm to enable an efficient
implementation of our (computationally moredemanding) specification.
Finally, section V concludes.

[1. The Amin/Bodurtha Framewor k
The Amin and Bodurtha (1995) framework considers three sources of

risk, namely domestictermstructurerisk, foreigntermstructurerisk and
exchange rate risk, al under the risk-adjusted probability measure Q

2. This is an important advantage of the Amin and Bodurtha (1995) framework
compared to, e.g., Chang (2001).
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(“equivalent martingale measure”). Investors can trade every h years.
Let t), denote the exchange rate in units of domestic currency per
unit of foreign currency. St) evolves according to:

S(t+h)

ln—S(t)

=[as(t)+1,(t) =1, () [+ () Xs(t+h)Wh (1)

where agt) and o4(t) denote drift and exogenously specified volatility
functions, Xgih), i = 1, 2, ... 7 denotes a sequence of independent
random variables with expectation 0 and variance 1 under the risk-
adjusted probability measureandr 4 (t) and r, (t) denote the continuously
compounded domestic (d) and foreign (f) spot rate at timet.

The continuously compounded domestic and foreign forward rates
at timet for aduration of hyearsfromtime T until time T + h, specified
onap.a basis, aredenoted by f, (t, T) and f; (t, T). These forward rates
follow the process:®

fo(t+hT) =, (tT)+0 (L T)h+0, (1 T) X, (t+h)Vh
@
f(t+hT)=f (tT)+e, (t,T)h+o, (tT)X, (t+h)vh

where aq (t, T) and o4 (t, T) aswell asay (t, T) and o (t, T) are functions
representing the drift and the exogenously specified volatility of the
forward rates and X, (ih) and X; (ih), i =1, 2, ... = denote sequences of
independent random variables with expectation 0 and variance 1 under
Q. Each random variable by definition influences forward rates of all
possible maturities. For both currencies, the spot interest rateisdefined
as the one-period forward rate, thusr (t) =1, (t, t) and r; (t) = f; (t, t).

Furthermore, the correlation matrix between X, (t), X; (t) and X, (t)
is defined by:

3. Notethat inthegeneral Amin and Bodurtha (1995) framework all drift and vol atility
functions as well as correlation coefficients can depend on time as well as past and current
state variables. For notational convenience and without loss of generality we omit in this
paper in the drift and volatility functions oy (t, T), o4 (t, T), o4 (t, T), o; (t, T), as (t) and o (t)
any possible dependence on the state variables, i.e., the forward rates or the exchange rate.
Thesameistruefor all correlations used in this paper, which can depend on the point intime
and on the state. Of course, empirical estimation can be considerably simplified by assuming
atime and state independent correlation matrix.
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Within thissetting, Amin/Bodurthaderive (cumulative) drift ratesvalid
for all modelswithin their framework.
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o (t)h=—In[ [ exp[ 5 () Xs (t+ W)V ] 5)

where E, denotes the expectation (under Q) conditional on the
information at timet.

Equations 3 — 5 represent the (cumulative) drift functions of a very
general class of models. Different specificationsof thetree, i.e., binomial,
trinomial or even more compl ex versions, path-dependent aswell aspath-
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independent characterisations, with arbitrary volatility functions and
arbitrary correlation matrixesfor X (t), X (t) and X, (t) can be generated.

Based on this, the following steps are required to obtain a readily
implementable model:

1. The structure of the tree, i.e., especialy the number of nodes
departing from each node and the exact distribution of the variables X,
(1), X (t) and Xg (t) must be specified.

2. Having determined the structure of the tree, the conditional
expectationsin equations 3—5 must be calculated in order to obtain the
cumulative drift rates as afunction of volatilities and correlations.

3. Afterwards, for practical application, thesecumulative drift rates
have to be converted into one-period drift rates. Thishasto be donefor
any node at any point in time.

4. With the one-period drifts obtained, the next step in the
implementation rel atesto the estimation of thevolatility and correlation
parameters. This can be done from historical dataor implicitly.

5. On this basis the complete tree is constructed by forward-
recursion, using the volatilities and correlations from step 4, aswell as
the drift terms (as a function of the volatilities and correlations) from
step 3.

6. Then, for each node the payoff of the financial instrument/real
option if exercised in this particular node can be determined.

7. Finaly, in astandard backward recursive procedure in each node
one has to compare the value from immediate exercise with the
(conditionally) expected value (under the risk-adjusted probability
measure) from optimal later exercise (using the domestic spot interest
rates r, (t) for discounting). If the former is higher, then exercise makes
sense in this node, otherwise exercise should be postponed to the future
optimal exercisetime. Thisyieldsthevalueof thefinancial derivative/real
option in each node and the optimal exercise time (stopping time). The
value derived is the maximum over all stochastic exercise times of the
(risk-adjusted) expected present val ues of the payoffsat exercisefromthe
instrument. Equally, it can beinterpreted asthe cost of adynamic trading
strategy that super-replicates the cash flows from the financial
derivative/real option. For a definition of superreplication, see Musiela
and Rutkowski (1997). For a detailed description of this dynamic
programming procedure, see Lamberton and Lapeyre (1996).
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[11. Timing Decisionsin a Multinational Context

Before turning to the implementation of the framework in section 1V,
we bring, in this section, two relevant and typical examples of timing
decisons in a multinational context where the Amin/Bodurtha
framework can be used: The first example relates to American-style
financial derivatives, for which the Amin/Bodurtha framework
originally has been devel oped. In addition, we show how to extend the
field of application of this model to real options that occur in a
multinational context. In the following, we derive the payoffsfor these
two specific examples (i.e., step 6 above).

A. American-Style Financial Derivatives

Aspointed out in theintroduction, American-stylefinancial derivatives
of the two term structures of interest rate and the exchange rateinclude
currency swap options, currency warrants, currency exchangewarrants,
(rate) differential or cross-rate swaps, interest rate derivatives written
ontwo term structures like cross-currency caps or floors and structured
bonds like callable currency-linked bonds. Theoretically (i.e., not
looking at implementational issues), the valuation of each of these
instruments using the Amin/Bodurtha framework is straightforward.

L et usinvestigate, asan example, theval uation of an American-style
currency swap option (“currency swaption”). The value of such a
derivativeisthe maximum over all possible stochastic exercisetimes of
the risk-adjusted expected present val ue of the payoffsfrom the option
at exercise time. Both this maximum value and the optimal exercise
time can be derived using the Amin and Bodurtha (1995) model and the
seven steps outlined in the previous section.

Thefirstfive stepsrel ateto theforward-recursive construction of the
tree. These steps are completely independent of the instrument to be
valued. In step 6 for each node of the tree, representing the term
structures of domestic and foreign interest rates as well as the foreign
exchange rate, the payoff of the respective financia instrument if
exercised in this node has to be derived. This is the only step that
depends on the security. In general, there are different specifications of
currency swaptions. Therefore, the precise payoff from the currency
swaption is determined in the specific contract.

Let us investigate one particular example of a fixed-for-fixed
currency swaption where a currency swap (where the holder receives
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interest payments on a specified notional in domestic currency at a
specified domestic interest rate and performs interest payments on a
specified notional inforeign currency at aspecified foreigninterest rate,
including the exchange of the notional at the end) can be purchased at
agiven strikeprice. Using for the maturity of the swap the symbol T, for
the domestic currency notional the symbol N, for the foreign currency
notional N, for the domestic interest rate of the swap rg, and for the
foreign interest rate rge, the time t-value of the swap from the
perspective of the party that receivesthe paymentsin domestic currency
and pays the foreign currency cash flow is:

;
h s-1
Vauar (1) = NoTs o z Zf (t,uh)h | = S(t)Ners
t -
T I_l
h s-1
x > exp| - f,(t,uh)h |+ Ny exp Zf t,uh)h ©®
s:£+1 u:L u_f
h h

Due to the compl eteness of the market (see, e.g., Dothan [1990] for
the concept of market completeness), Ve () can beinterpreted asthe
cost of atrading strategy that replicates the cash flows from the swap.
Based on Vg, (1), the payoff of acall option on the swap with exercise
price K if exercised at timetis:

Vo (1) = MAX [ Vg (1) - K,0] 7)

Thefinal step 7 (backward recursivevaluation of the American-style
derivative) is again identical for all securities and described in the
previous section.

B. Real Optionsin a Multinational Context

The Amin/Bodurtha framework, in general, can be used for all timing
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optionsthat depend on theinterest rate and exchange rate devel opment.
An important field of application is the valuation of flexibility and
optimal timing decisions of multinational companies that are active in
morethan one currency area. The most popular examplesarethe option
to invest abroad (in a foreign direct investment or more general any
investment project (e.g., a subsidiary) that generates cash flowsin a
foreign currency), i.e., the optimal timing of market entry, or the option
to abandon a (foreign direct) investment in another currency area, i.e.,
the optimal timing of a market exit.*

The procedure for the valuation of timing optionsin amultinational
context is very similar to the valuation of American-style financia
derivative described in 111.A. Both the building of the tree and the
backward recursive valuation are identical. The only difference is step
6 where the payoff of the real option in each node is determined.

Let us explain this step with the example of the option to invest
abroad, i.e., the optimal timing of an FDI market entry. Thecriterionfor
the decision-maker isto maximize (over all possible stochastic exercise
times) the expected net present value (under the risk-adjusted
probability measure), as of time O, in the domestic currency. The
methodol ogy for both optimization of market entry timing and valuation
of this flexibility is the standard backward recursion in the
Amin/Bodurtha tree.

Assuming that the cash flows in the foreign currency at each time

4. Generally speaking, multinational timing decisionsinevitably create an American-
styleoption or Bermudan option that depend on thesethreefactorsin combination. Onecould
of course ask, why a three-factor derivatives model is required for these decisions and
whether any simplifications are possible. One argument could be that if al the cash flows
(including the cost) are given in foreign currency, modeling only the foreign term structure
of interest rates, optimizing in the foreign term structure tree and converting the NPV at the
spot exchange rate would be sufficient. However, modeling only the foreign term structure
would beonly sufficient if the goal wasto maximizethenet present valueinforeign currency.
Dueto the stochastic exercise time an optimization in the foreign currency and a conversion
at the spot exchange rate does not give the same results as the optimization in the domestic
currency using the three-factor model as described at the end of section Il. Furthermore,
modeling foreign currency cash flowsthat depend on domestic interest rate risk or exchange
rate risk inevitably requires explicit modeling of these two factors, as well. Another
simplification would involve the (unrealistic) assumption of independence of exchangerate,
domestic interest rates and foreign interest rates. By this, one could reduce complexity inthe
computation of the expected present values of the cash flows—given an exercisetime (e.g.,
working with the current forward exchange rate, to convert the stream of foreign currency
cash flows into domestic currency cash flows, or with the current domestic term structure
instead of the successive discounting with thefuture spot rates). But eveninthiscase, finding
the optimal exercise timeinvolves optimization over al stochastic exercisetimesin thetree.
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step s (t < sh < T), symbolized by CF (sh), only depend on the interest
and exchange rate environment at or before time sh, the present value
of the FDI as of time t in domestic currency, PV (t), is represented by
the following equation:®

PV(t)= 3 E|CF (sn)S(s)ep| -5, (un)h| | @

The option to invest abroad is simply a call option on this present
value of theinvestment project. Therefore, using C (t) for the cost of the
FDI in domestic currency at time t, the payoff of the real option if
exercised at tis:

Voerion (t) = MAX[ PV (t)-C(t),0] 9)

In asimilar way, the option to abandon aforeign investment can be
represented as a put option on the foreign investment with the present
value standing for the value of all cash flows yet to come and using
instead of the cost of the project the proceeds from abandoning the
foreign investment.

Note that by using the original Amin/Bodurtha framework for
multinational timing optionsone does not necessarily implicitly assume
deterministic cash flows. Both the cash flows CF (t) and the cost C (t)
can depend on the domestic and foreign term structure of interest rates
and the exchange rate, at or before time t. Especially, if the cost of a
foreign investment is expressed (or negotiated) in foreign currency, it
is plausible that C (t), the cost in domestic currency, depends on the
exchangerate S(t). Thus, the underlying assumption is that cash flows

5. Incontrast to equation 6 where we could discount the foreign cash flows using the
foreign term structure as of time t and convert the foreign currency present value into the
domestic currency present val ue using the exchange rate at timet, herewe haveto convert the
cash flow in foreign currency at time sh into domestic currency using the exchange rate at
time sh, then discount by the series of domestic spot rates and finally take the risk-adjusted
expectation. Thereason for this discrepancy isthat in equation 6 all cash flows were known
as of timet (measurable with respect to the time-t sigma field), which is not the case in
equation 8, aswe a so want to allow foreign currency cash flowsthat are correlated with the
interest rate and exchange rate environment. With foreign currency cash flows independent
of interest rates and exchangerates, adiscounting anal ogousto equation 6 would be possible.
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are only subject to interest rate and exchange rate risk (or can be
spanned by these three risk factors) and that there is no idiosyncratic
cash flow risk, i.e, risk in addition to interest rate and exchange rate
risk. It must be highlighted that the absence of such anidiosyncratic risk
factor is frequently assumed in the waiting to invest literature in a
domestic context (e.g., Ingersoll and Ross [1992]) or other timing
options that exist in a domestic context (e.g., Frihwirth [2002]).
Neglecting idiosyncratic cash flow risk seems justified especially for
FDI infinancial companies abroad, as for financial companies interest
rate risk and exchange risk represent a large bulk of the risk (see Guo
and Wu [1998] for an empirical study of the impact of exchange rates
on the value of firms). From a modeling perspective, the important
benefit of this assumption of no idiosyncratic risk is that the market is
complete which means that al risk can be hedged by trading bonds
denominated in the two currencies as well asforeign exchange.

Ontheother hand, one could arguethat timing decisionsal so depend
onanidiosyncratic cash flow risk factor (e.g., changing demand). If one
doesnot want to neglect such anidiosyncratic cash flow risk factor, one
has to use a fourth stochastic factor, that represents idiosyncratic cash
flow risk. This would demand a generalization of the Amin and
Bodurtha (1995) model, as developed, e.g., by Wang (1999) or Chung
and Yang (2005) for the valuation of financial derivatives. It goes
without saying that using a four factor model instead of the original
three factor Amin/Bodurtha model would increase complexity. In this
case, the efficiency increasing measuresin implementati on we describe
in the following section are even more important. It can be shown that
these efficiency increasing measuresresultinasimilar relativeincrease
in efficiency aso for reductions (e.g., to two factors) and
generalizations (to more than three factors) of the Amin/Bodurtha
model. It must be added, however, that the whole procedure both with
and without the efficiency increasing measures takes longer with a
fourth factor, which can be considered as the price for integrating
additional idiosyncratic cash flow risk.°

6. Note that with afourth factor, unless there is an additional security that spans the
mearket, completeness of themarket getslost whichisaproblem of real optionsliteraturethat
is not unique to our paper. In this case, a sound solution requires the assumption that cash
flow risk is completely uncorrel ated with the market portfolio (which allows discounting by
the risk-free domestic interest rate) or a technique described in the incomplete market
literature (e.g., a methodology based on utility functions as can be seen from Follmer and
Schweitzer [1991] or other techniques as listed in Musiela and Rutkowski [1997]).
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FIGURE 1—A Segment of the Generated Tree arisk-adjusted

V. Implementation of the Amin/Bodurtha Framework

Given two specific examples of the application of the Amin/Bodurtha
framework, we now want to turn to some issues related to the
implementation.

A. Tree Sructure

With regard to the tree structure, Amin and Bodurtha (1995) propose
two aternative specifications. The “eight-node path-independent
model” uses eight nodes but assumesvolatilitiesto be constant. Asdrift
terms from the continuous-time models of Amin and Jarrow (1991,
1992) are substituted for the drift terms in the discrete-time model of
Amin/Bodurtha (see Amin and Bodurtha [1995], p. 206), it represents
only an approximation. In the second tree structure, the “four-node
model,” each node is followed by four nodes. X, and X; are modeled
explicitly, Xgisafunction of X, and X; (see Amin and Bodurtha[1995],
p. 202 and p. 204ff). Both existing specifications thus impose
restrictions: Besides using approximations from the continuous-time
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model, the eight-node path-independent model strongly restricts
volatilities. Furthermore, this specification can no longer be used to
price path-dependent (Asian) derivatives. Inthefour-node model not all
combinations of ups and downs of the three factors are possible. An
increase in the first two factors X, and X; for instance automatically
implies an increase in the third factor X

The most natural model specification would however be one that
allows any combination of up and down moves of the three factors
under consideration as well as arbitrary volatility functions. Elements
of the two model specifications proposed by Amin/Bodurtha can be
combined to achieve this. To begin with, we borrow the assumption of
a risk-adjusted probability of 1/2 for both states from the
Amin/Bodurthafour-node-model . Fromtheei ght-node path-independent
model we adopt the suggestion to replace the correlated random
variables X, (1), X (t) and X (t) by linear combinations of mutually
independent random variables Y, (1), Y, (t) and Y; (t). X (t) and Y (t) are
related to each other by:

X, (t)=Y,(t) (10)
X; (1) = pg Yy (t) + 41— p5 Y, (1) (12)
Xs(t)= Py (t) + PVa(t) + 1= P2 - p2Va(t)  (12)

where pis = pis —(pdfpds/ Jl—TSf )

In addition, we assumethat each Y (t) can either move up (Y (t) = 1)
or down (Y (t) =-1).

In the resulting specification, eight nodes at time't + h follow each
node at timet. Thismodel therefore allows any combination of up and
down moves of thethreefactorsunder consideration. In addition, it can
be shown that with this specification the Amin/Bodurtharestrictionson
expectation, variance and correlation are fulfilled (E [X,] = E[X{] =
E[Xd =0, V[XJ] =V [X] =V[X{] =1, CORR[X;, X{] = py, CORR[X,,
Xd = psss CORR [X;, X = pio)- Figure 1 illustrates the tree, with the
vector (t, Y, (1), Y, (1), Y5 (t)) denoting the values of the respective
random variables at timet.
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B. One-Period Drift Rates

Following steps 2 and 3 of the seven stepsoutlinedin section 11, all one-
period drift rates to build the tree for this model have to be calculated
to obtain areadily implementablemodel specification. Analytically this
is achieved by replacing X, (t + h) in equation 3 by Y, (t + h) and
computing the conditional expectation. Subtracting the cumulativedrift
rate for atime horizon of T —h from the cumulative drift rate for atime
horizon of T and using cosh [X] = 0.5 (exp[X] + exp [-X]) yieldsfor all
t and T the one-period drift rates:

.
h
cosh| Y’ o, (t,ih)v/hh
t
:E+

o (t,T)=h—12In L ] (13)

cosh| " o, (tih)vhh

i:£+l
h

In analogy to that we can obtain the one-period drift rates for the
foreign forward rate dynamics and the exchange rate dynamics. To
obtain ag (t), Xs (t + h) in equation 5 has to be replaced by the
corresponding function as defined in equation 12. The next step
involvessplitting up theexpectationinto the product of the expectations
of independent random variabl es. Cal cul ating expectationsand usingthe
definition of the cosinus hyperbolicus again yields the final expression
for the drift term of the exchange rate dynamics at any timet:

as(t) = _%In[COSh[O-S (t)\/ﬁpds}COSh[o-s (t)\/ﬁﬁfs]

(14)
XCOSh[O-s (t)\/ﬁx/l_ Pis—Pis” ﬂ

In order to compute the drift term for the foreign interest rate
dynamics, X; (t + h) and X, (t + h) in equation 4 have to be replaced by
the respective functions in equations 11 and 12. Splitting up the
expectation into the product of the expectations of independent random
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variables and solving for the drift at time t for maturity T leads to:’

o i 3
h
cosh O_s(t)pds\/ﬁ_ Y, o (tih) py Jhh
i:£+1
a (1T) =2 In| — - J
h
cosh| o5 (t) psv/h = > o (t,ih) py +/nh
i=£+1
L L h .
) . ) (15)
h
cosh| o5(t)pvh— Y o (tih)/1- p2 Vhh
s(t)Prs ; f Pa
X = Th =
T
cosh| o5(t) P/ — Y. o (t,ih) /1~ pZ +/hh
i:£+l
L h il

In line with the intuition built up by numerous authors since Black
and Scholes (1973), the drift termsin 13, 14 and 15 only depend on
volatilities and correlations. Furthermore, we derived these drift terms
only by specifying the number of nodes, the values of the independent
random variables Y (t) as well as the probabilities—fulfilling the
restrictions of Amin/Bodurtha.

C. Comparison with Existing Specifications

L et us compare the specification presented so far to those existing in
literature: As opposed to the four-node model proposed by
Amin/Bodurtha, in our specification X is explicitly modeled and not
implicitly asafunction of X, and X;, so that all combinations of upsand
downs of the three factors are possible.

As opposed to the eight-node path-independent model proposed by
Amin/Bodurtha, in our model specification there are no restrictions on
variances or covariances, which opens the way for numerous models:
e.g., the domestic/foreign term structure dynamics can be modeled by

7. Thedetailed derivation of o (t, T) ismoretedious than in the previous two cases and
can be obtained from the authors upon request.
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means of a Ho and Lee (1986) constant volatility model (i.e., o (t, T) =
o), the exponentially decaying variancemodel (i.e., o (t, T) = oexp [-A%
(T —-1)]), as shown by Heath, Jarrow and Morton (1992) or the constant
elasticity of variance model (i.e., o (t, T) = of (t, T)*) proposed by Cox
and Ross (1976). Recent research in continuous-time modeling of
interest rates (see Ait-Sahalia [1996] or Jones [2003]) investigates

more sophisticated volatility functions such as

o(tT) =B+ AT (tT)+ 5,1 (LT)* . Even these volatility

functions can be integrated into the model specification derived above.
To model the exchange rate dynamics a constant volatility model or a
constant elasticity of variance model can be used, to give a few
examples.

Thus, with the model specification presented in the previous
subsections, in contrast to the eight-node path-independent model also
stochastic volatility functions can be included. Stochastic volatility in
interest rate markets is a stylized fact that is widely recognized in the
empirical literature. Many stochastic volatility functions have the
additional advantage that they prevent (or at least strongly reduce the
probability of) negativeinterest rates (see, e.g., Cox, Ingersoll and Ross
[1985], Heath, Jarrow and Morton [1992] or Amin and Morton[1994]).
Also, including ARCH/GARCH effects inevitably leads to stochastic
volatilities (see, e.g., Kuberek [1992] or Gray [1996] for
ARCH/GARCH modelsfor interest rates).

Another argument speaking for themodel specification shown above
(compared to the eight-node path-independent model) is that path-
dependent products (e.g., Asian products) can be valued.

It goes without saying that a path-dependent eight-node model is
computationally less efficient than both a four-node model and a path-
independent eight-node model. This loss of efficiency, however,
represents the price to be paid for the opportunity to use al
combinations of ups and downs of the three factors and non-constant,
even unrestricted, volatilities. The next section shows how to keep this
loss of efficiency small.

D. Depth-first Algorithm

The reason for the restrictive assumptions in the two specifications
existing in literature was to reduce complexity in order to enable a
reasonableimplementation. Asamatter of fact the tree described above
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produces an exponentially growing number of nodes. A simple
calculation of the number of nodes that have to be kept in memory for
10 time steps gives 1,227,133,513 nodes. This implies exponentially
growing calculation times and memory requirements that at this point
can not be satisfied even by the most sophisticated computers. Given
that each node containstwo completeforward rate curvesin addition to
an exchangerate evolutionit isclear that using a path-dependent model
specification severely restricts the number of feasible time steps.

To solve the memory problem we suggest using the depth-first
algorithm as described in Broadie and Glasserman (1997). The depth-
first algorithm exploitsthe fact that different branches can be computed
independently of each other. The storage requirement of the depth-first
algorithmisabxd matrix only, where b isthe number of statesand dis
the number of time steps. In addition to minimal storage needs, the
depth-first algorithm grants memory access to array data structures
which is usually faster than with tree structures.

In the following, we apply the depth-first algorithm with a time-
independent and state-independent correlation matrix by using two
different volatility settings: The first setting is one with purely
deterministic volatility functions, namely the exponentially decaying
volatility model for interest rate volatility and a constant volatility for
the exchange rate volatility (o4 (t, T) = ogexp [-A¢ (T=1)], o¢ (, T) =
a@Xp [ (T—1)], o5 (t) = 09). The second setting is based on stochastic
volatility functions. We use the constant elasticity of variance process
for all three components (a4 (t, T) = o f, (t, ), o7 (t, T) = of; (t, TV,

o5 () = oS (1))

Table 1 shows the time to build the tree axnd price a financial
instrument or real option.? Intotal, for x periods 28' nodes haveto be
evaluated.® Time is denoted in seconds. i—0

The computation times in table 1 show that for a sufficiently large
numbers of periods, pricing with our eight-node path-dependent model
specification is possible at acceptable computation times both with
deterministic volatility functions and with stochastic volatility
functions. Note that with the pruning techniques described in Gautam,

8. Themoded wasimplemented in C++ and compiled with the gcc 3.3.1 package with
flags—O3 —march = pentium4 —mcpu = pentium4 —msse—msse2 —mmmx. Thecalculations
were performed on a standard Pentium 4 Linux machine.

9. A period number of x requires a tree depth of x + 1, because we assume to start at
timet=0.
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TABLE 1. Computation Time Analysis (Timein Seconds)

Number Computation Time Computation Time
of Periods (Deterministic Volatility (Stochastic Volatility
Functions) Functions)
4 0.0000 0.0400
5 0.0300 0.2500
6 0.2300 2.0100
7 1.8100 16.4300
8 14.5700 129.9200
9 115.2300 1024.5400
10 929.3700 8340.3400

Broadie and Glasserman (1997) even further speed increases can be
obtained. Therefore, neither a reduction to a four-node model nor a
restriction of volatility functions to obtain a path-independent eight-
node model is necessary with today's computing capacity using the
depth-first algorithm.

V. Conclusion

The Amin and Bodurtha (1995) framework can be applied for many
types of multinational timing decisions, both in the valuation of
American-stylefinancial derivativesandinthe valuation of real options
in a multinational context. The purpose of this paper is to present a
readily implementable model specification within the Amin/Bodurtha
framework. Asits main benefits, compared to existing specificationsin
literature, this model specification allows any combination of up and
down moves of the three factors (domestic interest rate risk, foreign
interest rate risk and exchange rate risk) as well as arbitrary volatility
functions. Wederive closed-form solutionsfor the one-period drift rates
of the three factors in this model specification. We furthermore
demonstrate that the problem of increased computational complexity
can be remedied by means of the depth-first algorithm. Pricing with our
model specification is possible at acceptable computation times for a
sufficiently large number of periods. Thus, the simplified and more
restrictive specifications suggested by Amin/Bodurtha are no longer
necessary using the depth-first algorithm.
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