
* This paper was conducted while Manfred Frühwirth was a visiting professor at the 
Weatherhead Center for International Affairs at Harvard University in the academic year 
2005/2006. The author appreciates the support, resources and opportunities provided by 
the Weatherhead Center during this time.

(Multinational Finance Journal, 2007, vol. 11, no. 3/4, pp. 157–178)
© by Multinational Finance Society, a nonprofit corporation.  All rights reserved.  
DOI: 10.17578/11-3/4-1

1

Timing Decisions in a Multinational Context:
Implementing the Amin/Bodurtha Framework

Manfred Frühwirth*
Vienna University of Economics and Business Administration, Austria

Paul Schneider
Vienna University of Economics and Business Administration, Austria

Markus S. Schwaiger
Austrian Central Bank and Vienna University of Economics and Business

Administration, Austria

The Amin/Bodurtha framework was developed for the valuation of
American-style financial instruments driven by three sources of uncertainty—
domestic interest rate risk, foreign interest rate risk and exchange rate risk. The
model is not only appropriate for pricing a number of financial derivatives, but
also, as we show, for valuing foreign investment projects in the presence of real
options. In this paper we propose the most natural directly implementable
specification within the Amin/Bodurtha framework that permits all
combinations of up and down moves of these three risk factors without
restricting volatility functions of the factors or correlations between them. By
use of the depth-first algorithm, we can show that this specification is
implementable at reasonable computation times (JEL: G13, G31, F30).
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I. Introduction

Timing decisions in a multinational context, i.e., timing decisions that
depend on interest rates in two different countries (to be more precise:
currency areas) and on the exchange rate between the two currencies,
appear in several forms.
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One type of these timing decisions is the optimal exercise policy of
American-style financial instruments that are derivatives on two term
structures of interest rates and the respective exchange rate. There is a
large number of such instruments including currency swap options
(options to buy/sell a currency swap), currency warrants (long-term
options on currencies), currency exchange warrants (American-style
warrants granting a cash payment if the spot rate in a specified currency
exceeds some strike rate) and (rate) differential or cross-rate swaps
exchanging interest and principal in one currency for interest and
principal in another currency at a conversion rate fixed at the contract
date. Furthermore, American-style interest rate derivatives written on
two term structures (i.e., cross-currency caps or floors setting a cap or
a floor on the spread between two reference interest rates denominated
in different currencies) and several types of structured bonds, like
callable currency-linked bonds, the returns of which are determined by
changes in exchange rates and interest rates in different countries, can
be included here.

The other field where timing decisions in a multinational context are
increasingly important is real options in a multinational setting. Real
options refer to the freedom of an entrepreneur to take decisions
affecting the value of a project based on changes in the environment. In
a domestic (one country/currency) environment, the real options
technique has assumed a prominent role over the last decades (see, e.g.,
Dixit and Pindyck [1994] for a detailed overview). Recent literature
indicates that the concept of real options is becoming more and more
significant also from a macro-economic point of view (see, e.g.,
Emmons and Schmid [2004] or Dapena [2006]).

One essential type of real options are timing options. They are by
definition American-style, such that they can be exercised at any time
during the “life” of the project, or Bermudan, i.e., can be exercised at
multiple discrete points in time. Timing options in a domestic context
are covered by literature in detail: E.g., McDonald and Siegel (1986) or
Ingersoll and Ross (1992) analyze the optimal timing of an investment
(“waiting to invest” problem). Dixit (1989) analyses the optimal timing
of both market entry and market exit. McDonald and Siegel (1985)
investigate the option to shut down, i.e., the optimal exit time. Another
typical timing option is the optimal timing of an expansion. Also,
Frühwirth (2002) investigates a timing decision related to specific tax
systems.

In the course of globalization both the number and the importance
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1. Using these continuous-time models for the valuation of timing decisions and
American-style or Bermudan claims would only be possible in combination with finite
differences, Greens functions, or Monte Carlo Simulations (see Longstaff and Schwartz
[2001]). Those methods, however, also have drawbacks: Greens functions are notoriously
hard to find. Finite differences become computationally infeasible when applied to multi-
factor models. The Longstaff/Schwartz simulation algorithm causes problems in the valuation
of out-of-money options. In addition, when using discretisation schemes for continuous-time
no-arbitrage models one has to be careful not to introduce arbitrage opportunities (see
Glasserman and Zhao [2000]).

of multinational corporations, foreign direct investments and cross-
country mergers and acquisitions have significantly increased (see Clark
and Tunaru [2001], Kim, Lyn and Zychowicz [2003], Dunning and
Narula [2004], Bernard, Jensen and Schott [2005], Castellani and Zanfei
[2006] and Jain and Vachani [2006]). This also results in a growing
significance of real options in an international context (see, e.g.,
Kenneally and Lichtenstein [2002], Rugman and Li [2005] or Driouchi,
Battisti and Bennet [2006]). By this, the valuation of multinational
timing options becomes important, both from a company’s perspective
and from a political economy perspective (see, e.g., Darby et al. [1999]).
For instance, foreign direct investments involve the flexibility to choose
the timing of investment which requires dealing with the evolution of
the domestic term structure, the foreign term structure and the exchange
rate. Similarly, the option to abandon or the option to expand a foreign
direct investment depend on these three risk sources. Finally, switching
options between production in different countries and other forms of
operational flexibility of multinational corporations involve
multinational timing decisions.

Thus, timing decisions in a multinational context, both with respect
to financial derivatives and with respect to real options, require explicit
modeling of the interest rate environment in (at least) two countries and
the respective exchange rate. For the valuation of interest rate and
exchange rate financial derivatives several models have been developed
over the last three decades: The models range from modifications of the
Black/Scholes model (see Garman and Kohlhagen [1983]) to more
sophisticated models that include interest rate risk in two different
countries/currencies and exchange rate risk (see Grabbe [1983],
Hilliard, Madura and Tucker [1991], Amin and Jarrow [1991] and
Ekvall, Jennergren and Näslund [1997]). The models cited above,
however, can only be used to value European-style derivatives and are
therefore not appropriate for timing decisions.1

In order to value American-style financial derivatives subject to
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2. This is an important advantage of the Amin and Bodurtha (1995) framework
compared to, e.g., Chang (2001).

domestic term structure risk, foreign term structure risk and exchange
rate risk, Amin and Bodurtha (1995) introduce a framework, the
strength of which is its very general and broad nature leaving much
freedom in specification and implementation. Neither the distributions
of interest rates and exchange rates nor the structure of the tree are
restricted in the framework.2

In this paper, we first show how the Amin/Bodurtha framework can
be used not only in connection with financial derivatives but also for
real options in a multinational context. Then, we present the most
natural specification within the Amin/Bodurtha framework. This
specification, in contrast to the formulations existing in literature,
permits all combinations of the three factors under consideration and
preserves the flexibility in the volatility functions and correlations
driving the interest rate and exchange rate dynamics. For this
specification we explicitly derive the one-period drift rates for the
domestic interest rates, foreign interest rates and exchange rates and we
propose an algorithm to implement the model. The use of the depth first
algorithm, by economizing on computer memory and thereby increasing
the number of possible time steps, enables us to implement this
specification with modest computing power.

The paper is structured as follows: section II presents the general
Amin and Bodurtha (1995) framework without fixing a specification of
the model. Section III matches the two types of timing decisions in a
multinational context (American-style financial derivatives on the one
hand and multinational real options on the other hand) to this
framework and explicitly derives the payoffs for a few examples.
Section IV deals with the implementation of the model, presenting our
specification, comparing it with the existing specifications and
presenting the depth-first algorithm to enable an efficient
implementation of our (computationally more demanding) specification.
Finally, section V concludes.

II. The Amin/Bodurtha Framework

The Amin and Bodurtha (1995) framework considers three sources of
risk, namely domestic term structure risk, foreign term structure risk and
exchange rate risk, all under the risk-adjusted probability measure Q
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3. Note that in the general Amin and Bodurtha (1995) framework all drift and volatility
functions as well as correlation coefficients can depend on time as well as past and current
state variables. For notational convenience and without loss of generality we omit in this
paper in the drift and volatility functions αd (t, T), σd (t, T), αf (t, T), σf (t, T), αS (t) and σS (t)
any possible dependence on the state variables, i.e., the forward rates or the exchange rate.
The same is true for all correlations used in this paper, which can depend on the point in time
and on the state. Of course, empirical estimation can be considerably simplified by assuming
a time and state independent correlation matrix.

(“equivalent martingale measure”). Investors can trade every h years.
Let S(t), denote the exchange rate in units of domestic currency per

unit of foreign currency. S(t) evolves according to:
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where αS(t) and σS(t) denote drift and exogenously specified volatility
functions, XS(ih), i = 1, 2, ... τ denotes a sequence of independent
random variables with expectation 0 and variance 1 under the risk-
adjusted probability measure and rd (t) and rf (t) denote the continuously
compounded domestic (d) and foreign (f) spot rate at time t.

The continuously compounded domestic and foreign forward rates
at time t for a duration of h years from time T until time T + h, specified
on a p.a. basis, are denoted by fd (t, T) and ff (t, T). These forward rates
follow the process:3
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where αd (t, T) and αf (t, T) as well as σd (t, T) and σf (t, T) are functions
representing the drift and the exogenously specified volatility of the
forward rates and Xd (ih) and Xf (ih), i = 1, 2, ... τ denote sequences of
independent random variables with expectation 0 and variance 1 under
Q. Each random variable by definition influences forward rates of all
possible maturities. For both currencies, the spot interest rate is defined
as the one-period forward rate, thus rd (t) = fd (t, t) and rf (t) = ff (t, t).

Furthermore, the correlation matrix between Xd (t), Xf (t) and XS (t)
is defined by:
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Within this setting, Amin/Bodurtha derive (cumulative) drift rates valid
for all models within their framework.
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where Et denotes the expectation (under Q) conditional on the
information at time t.

Equations 3 – 5 represent the (cumulative) drift functions of a very
general class of models. Different specifications of the tree, i.e., binomial,
trinomial or even more complex versions, path-dependent as well as path-
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independent characterisations, with arbitrary volatility functions and
arbitrary correlation matrixes for Xd (t), Xf (t) and XS (t) can be generated.

Based on this, the following steps are required to obtain a readily
implementable model:

1. The structure of the tree, i.e., especially the number of nodes
departing from each node and the exact distribution of the variables Xd

(t), Xf (t) and XS (t) must be specified.

2. Having determined the structure of the tree, the conditional
expectations in equations 3 – 5 must be calculated in order to obtain the
cumulative drift rates as a function of volatilities and correlations.

3. Afterwards, for practical application, these cumulative drift rates
have to be converted into one-period drift rates. This has to be done for
any node at any point in time.

4. With the one-period drifts obtained, the next step in the
implementation relates to the estimation of the volatility and correlation
parameters. This can be done from historical data or implicitly.

5. On this basis the complete tree is constructed by forward-
recursion, using the volatilities and correlations from step 4, as well as
the drift terms (as a function of the volatilities and correlations) from
step 3.

6. Then, for each node the payoff of the financial instrument/real
option if exercised in this particular node can be determined.

7. Finally, in a standard backward recursive procedure in each node
one has to compare the value from immediate exercise with the
(conditionally) expected value (under the risk-adjusted probability
measure) from optimal later exercise (using the domestic spot interest
rates rd (t) for discounting). If the former is higher, then exercise makes
sense in this node, otherwise exercise should be postponed to the future
optimal exercise time. This yields the value of the financial derivative/real
option in each node and the optimal exercise time (stopping time). The
value derived is the maximum over all stochastic exercise times of the
(risk-adjusted) expected present values of the payoffs at exercise from the
instrument. Equally, it can be interpreted as the cost of a dynamic trading
strategy that super-replicates the cash flows from the financial
derivative/real option. For a definition of superreplication, see Musiela
and Rutkowski (1997). For a detailed description of this dynamic
programming procedure, see Lamberton and Lapeyre (1996).
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III. Timing Decisions in a Multinational Context

Before turning to the implementation of the framework in section IV,
we bring, in this section, two relevant and typical examples of timing
decisions in a multinational context where the Amin/Bodurtha
framework can be used: The first example relates to American-style
financial derivatives, for which the Amin/Bodurtha framework
originally has been developed. In addition, we show how to extend the
field of application of this model to real options that occur in a
multinational context. In the following, we derive the payoffs for these
two specific examples (i.e., step 6 above).

A. American-Style Financial Derivatives

As pointed out in the introduction, American-style financial derivatives
of the two term structures of interest rate and the exchange rate include
currency swap options, currency warrants, currency exchange warrants,
(rate) differential or cross-rate swaps, interest rate derivatives written
on two term structures like cross-currency caps or floors and structured
bonds like callable currency-linked bonds. Theoretically (i.e., not
looking at implementational issues), the valuation of each of these
instruments using the Amin/Bodurtha framework is straightforward.

Let us investigate, as an example, the valuation of an American-style
currency swap option (“currency swaption”). The value of such a
derivative is the maximum over all possible stochastic exercise times of
the risk-adjusted expected present value of the payoffs from the option
at exercise time. Both this maximum value and the optimal exercise
time can be derived using the Amin and Bodurtha (1995) model and the
seven steps outlined in the previous section.

The first five steps relate to the forward-recursive construction of the
tree. These steps are completely independent of the instrument to be
valued. In step 6 for each node of the tree, representing the term
structures of domestic and foreign interest rates as well as the foreign
exchange rate, the payoff of the respective financial instrument if
exercised in this node has to be derived. This is the only step that
depends on the security. In general, there are different specifications of
currency swaptions. Therefore, the precise payoff from the currency
swaption is determined in the specific contract.

Let us investigate one particular example of a fixed-for-fixed
currency swaption where a currency swap (where the holder receives
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interest payments on a specified notional in domestic currency at a
specified domestic interest rate and performs interest payments on a
specified notional in foreign currency at a specified foreign interest rate,
including the exchange of the notional at the end) can be purchased at
a given strike price. Using for the maturity of the swap the symbol T, for
the domestic currency notional the symbol ND, for the foreign currency
notional NF, for the domestic interest rate of the swap rS,D and for the
foreign interest rate rS,F, the time t-value of the swap from the
perspective of the party that receives the payments in domestic currency
and pays the foreign currency cash flow is:

(6)
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Due to the completeness of the market (see, e.g., Dothan [1990] for
the concept of market completeness), VSWAP (t) can be interpreted as the
cost of a trading strategy that replicates the cash flows from the swap.
Based on VSWAP (t), the payoff of a call option on the swap with exercise
price K if exercised at time t is:

(7)( ) ( ) ,0CALL SWAPV t MAX V t K= −⎡ ⎤⎣ ⎦

The final step 7 (backward recursive valuation of the American-style
derivative) is again identical for all securities and described in the
previous section.

B. Real Options in a Multinational Context

The Amin/Bodurtha framework, in general, can be used for all timing
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4. Generally speaking, multinational timing decisions inevitably create an American-
style option or Bermudan option that depend on these three factors in combination. One could
of course ask, why a three-factor derivatives model is required for these decisions and
whether any simplifications are possible. One argument could be that if all the cash flows
(including the cost) are given in foreign currency, modeling only the foreign term structure
of interest rates, optimizing in the foreign term structure tree and converting the NPV at the
spot exchange rate would be sufficient. However, modeling only the foreign term structure
would be only sufficient if the goal was to maximize the net present value in foreign currency.
Due to the stochastic exercise time an optimization in the foreign currency and a conversion
at the spot exchange rate does not give the same results as the optimization in the domestic
currency using the three-factor model as described at the end of section II. Furthermore,
modeling foreign currency cash flows that depend on domestic interest rate risk or exchange
rate risk inevitably requires explicit modeling of these two factors, as well. Another
simplification would involve the (unrealistic) assumption of independence of exchange rate,
domestic interest rates and foreign interest rates. By this, one could reduce complexity in the
computation of the expected present values of the cash flows—given an exercise time (e.g.,
working with the current forward exchange rate, to convert the stream of foreign currency
cash flows into domestic currency cash flows, or with the current domestic term structure
instead of the successive discounting with the future spot rates). But even in this case, finding
the optimal exercise time involves optimization over all stochastic exercise times in the tree.

options that depend on the interest rate and exchange rate development.
An important field of application is the valuation of flexibility and
optimal timing decisions of multinational companies that are active in
more than one currency area. The most popular examples are the option
to invest abroad (in a foreign direct investment or more general any
investment project (e.g., a subsidiary) that generates cash flows in a
foreign currency), i.e., the optimal timing of market entry, or the option
to abandon a (foreign direct) investment in another currency area, i.e.,
the optimal timing of a market exit.4

The procedure for the valuation of timing options in a multinational
context is very similar to the valuation of American-style financial
derivative described in III.A. Both the building of the tree and the
backward recursive valuation are identical. The only difference is step
6 where the payoff of the real option in each node is determined.

Let us explain this step with the example of the option to invest
abroad, i.e., the optimal timing of an FDI market entry. The criterion for
the decision-maker is to maximize (over all possible stochastic exercise
times) the expected net present value (under the risk-adjusted
probability measure), as of time 0, in the domestic currency. The
methodology for both optimization of market entry timing and valuation
of this flexibility is the standard backward recursion in the
Amin/Bodurtha tree.

Assuming that the cash flows in the foreign currency at each time
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5. In contrast to equation 6 where we could discount the foreign cash flows using the
foreign term structure as of time t and convert the foreign currency present value into the
domestic currency present value using the exchange rate at time t, here we have to convert the
cash flow in foreign currency at time sh into domestic currency using the exchange rate at
time sh, then discount by the series of domestic spot rates and finally take the risk-adjusted
expectation. The reason for this discrepancy is that in equation 6 all cash flows were known
as of time t (measurable with respect to the time-t sigma field), which is not the case in
equation 8, as we also want to allow foreign currency cash flows that are correlated with the
interest rate and exchange rate environment. With foreign currency cash flows independent
of interest rates and exchange rates, a discounting analogous to equation 6 would be possible.

step s (t < sh # T), symbolized by CF (sh), only depend on the interest
and exchange rate environment at or before time sh, the present value
of the FDI as of time t in domestic currency, PV (t), is represented by
the following equation:5
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The option to invest abroad is simply a call option on this present
value of the investment project. Therefore, using C (t) for the cost of the
FDI in domestic currency at time t, the payoff of the real option if
exercised at t is:

(9)( ) ( ) ( ),0OPTIONV t MAX PV t C t= −⎡ ⎤⎣ ⎦

In a similar way, the option to abandon a foreign investment can be
represented as a put option on the foreign investment with the present
value standing for the value of all cash flows yet to come and using
instead of the cost of the project the proceeds from abandoning the
foreign investment.

Note that by using the original Amin/Bodurtha framework for
multinational timing options one does not necessarily implicitly assume
deterministic cash flows. Both the cash flows CF (t) and the cost C (t)
can depend on the domestic and foreign term structure of interest rates
and the exchange rate, at or before time t. Especially, if the cost of a
foreign investment is expressed (or negotiated) in foreign currency, it
is plausible that C (t), the cost in domestic currency, depends on the
exchange rate S (t). Thus, the underlying assumption is that cash flows
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6. Note that with a fourth factor, unless there is an additional security that spans the
market, completeness of the market gets lost which is a problem of real options literature that
is not unique to our paper. In this case, a sound solution requires the assumption that cash
flow risk is completely uncorrelated with the market portfolio (which allows discounting by
the risk-free domestic interest rate) or a technique described in the incomplete market
literature (e.g., a methodology based on utility functions as can be seen from Föllmer and
Schweitzer [1991] or other techniques as listed in Musiela and Rutkowski [1997]).

are only subject to interest rate and exchange rate risk (or can be
spanned by these three risk factors) and that there is no idiosyncratic
cash flow risk, i.e., risk in addition to interest rate and exchange rate
risk. It must be highlighted that the absence of such an idiosyncratic risk
factor is frequently assumed in the waiting to invest literature in a
domestic context (e.g., Ingersoll and Ross [1992]) or other timing
options that exist in a domestic context (e.g., Frühwirth [2002]).
Neglecting idiosyncratic cash flow risk seems justified especially for
FDI in financial companies abroad, as for financial companies interest
rate risk and exchange risk represent a large bulk of the risk (see Guo
and Wu [1998] for an empirical study of the impact of exchange rates
on the value of firms). From a modeling perspective, the important
benefit of this assumption of no idiosyncratic risk is that the market is
complete which means that all risk can be hedged by trading bonds
denominated in the two currencies as well as foreign exchange.

On the other hand, one could argue that timing decisions also depend
on an idiosyncratic cash flow risk factor (e.g., changing demand). If one
does not want to neglect such an idiosyncratic cash flow risk factor, one
has to use a fourth stochastic factor, that represents idiosyncratic cash
flow risk. This would demand a generalization of the Amin and
Bodurtha (1995) model, as developed, e.g., by Wang (1999) or Chung
and Yang (2005) for the valuation of financial derivatives. It goes
without saying that using a four factor model instead of the original
three factor Amin/Bodurtha model would increase complexity. In this
case, the efficiency increasing measures in implementation we describe
in the following section are even more important. It can be shown that
these efficiency increasing measures result in a similar relative increase
in efficiency also for reductions (e.g., to two factors) and
generalizations (to more than three factors) of the Amin/Bodurtha
model. It must be added, however, that the whole procedure both with
and without the efficiency increasing measures takes longer with a
fourth factor, which can be considered as the price for integrating
additional idiosyncratic cash flow risk.6
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FIGURE 1—A Segment of the Generated Tree a risk-adjusted

IV. Implementation of the Amin/Bodurtha Framework

Given two specific examples of the application of the Amin/Bodurtha
framework, we now want to turn to some issues related to the
implementation.

A. Tree Structure

With regard to the tree structure, Amin and Bodurtha (1995) propose
two alternative specifications. The “eight-node path-independent
model” uses eight nodes but assumes volatilities to be constant. As drift
terms from the continuous-time models of Amin and Jarrow (1991,
1992) are substituted for the drift terms in the discrete-time model of
Amin/Bodurtha (see Amin and Bodurtha [1995], p. 206), it represents
only an approximation. In the second tree structure, the “four-node
model,” each node is followed by four nodes. Xd and Xf are modeled
explicitly, XS is a function of Xd and Xf (see Amin and Bodurtha [1995],
p. 202 and p. 204ff). Both existing specifications thus impose
restrictions: Besides using approximations from the continuous-time
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model, the eight-node path-independent model strongly restricts
volatilities. Furthermore, this specification can no longer be used to
price path-dependent (Asian) derivatives. In the four-node model not all
combinations of ups and downs of the three factors are possible. An
increase in the first two factors Xd and Xf for instance automatically
implies an increase in the third factor XS.

The most natural model specification would however be one that
allows any combination of up and down moves of the three factors
under consideration as well as arbitrary volatility functions. Elements
of the two model specifications proposed by Amin/Bodurtha can be
combined to achieve this. To begin with, we borrow the assumption of
a risk-adjusted probability of 1/2 for both states from the
Amin/Bodurtha four-node-model. From the eight-node path-independent
model we adopt the suggestion to replace the correlated random
variables Xd (t), Xf (t) and XS (t) by linear combinations of mutually
independent random variables Y1 (t), Y2 (t) and Y3 (t). X (t) and Y (t) are
related to each other by:

(10)( ) ( )1dX t Y t=

(11)( ) ( ) ( )2
1 21f df dfX t Y t Y tρ ρ= + −

(12)( ) ( ) ( ) ( )2 2
1 2 31S dS fs dS fsX t Y t Y t Y tρ ρ ρ ρ= + + − −

where ( )21 .fS fS df dS dfρ ρ ρ ρ ρ= − −

In addition, we assume that each Y (t) can either move up (Y (t) = 1)
or down (Y (t) = –1).

In the resulting specification, eight nodes at time t + h follow each
node at time t. This model therefore allows any combination of up and
down moves of the three factors under consideration. In addition, it can
be shown that with this specification the Amin/Bodurtha restrictions on
expectation, variance and correlation are fulfilled (E [Xd] = E [Xf] = 
E [XS] = 0, V [Xd] = V [Xf] = V [XS] = 1, CORR [Xd, Xf] = ρdf, CORR [Xd,
XS] = ρdS, CORR [Xf, XS] = ρfS). Figure 1 illustrates the tree, with the
vector (t, Y1 (t), Y2 (t), Y3 (t)) denoting the values of the respective
random variables at time t.
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B. One-Period Drift Rates

Following steps 2 and 3 of the seven steps outlined in section II, all one-
period drift rates to build the tree for this model have to be calculated
to obtain a readily implementable model specification. Analytically this
is achieved by replacing Xd (t + h) in equation 3 by Y1 (t + h) and
computing the conditional expectation. Subtracting the cumulative drift
rate for a time horizon of T – h from the cumulative drift rate for a time
horizon of T and using cosh [x] = 0.5 (exp[x] + exp [–x])  yields for all
t and T the one-period drift rates:

(13)( )
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∑

∑

In analogy to that we can obtain the one-period drift rates for the
foreign forward rate dynamics and the exchange rate dynamics. To
obtain αS (t), XS (t + h) in equation 5 has to be replaced by the
corresponding function as defined in equation 12. The next step
involves splitting up the expectation into the product of the expectations
of independent random variables. Calculating expectations and using the
definition of the cosinus hyperbolicus again yields the final expression
for the drift term of the exchange rate dynamics at any time t:

(14)

( ) ( ) ( )

( ) 2 2

1
ln cosh cosh

cosh 1

S S dS S fS

S dS fS

t t h t h
h

t h

α σ ρ σ ρ

σ ρ ρ

⎡ ⎡ ⎤ ⎡ ⎤= − ⎣ ⎦ ⎣ ⎦⎣

⎤⎡ ⎤× − −⎢ ⎥⎥⎣ ⎦⎦

In order to compute the drift term for the foreign interest rate
dynamics, Xf (t + h) and XS (t + h) in equation 4 have to be replaced by
the respective functions in equations 11 and 12. Splitting up the
expectation into the product of the expectations of independent random
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7. The detailed derivation of αf (t, T) is more tedious than in the previous two cases and
can be obtained from the authors upon request.

variables and solving for the drift at time t for maturity T leads to:7

   (15)

( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

2
1

1

2

1

1

2

1

cosh ,

1
, ln

cosh ,

cosh , 1

cosh , 1

T

h

S dS f df
t

i
h

f T

h

S dS f df
t

i
h

T

h

S fS f df
t

i
h

T

h

S fS f df
t

i
h

t h t ih hh

t T
h

t h t ih hh

t h t ih hh

t h t ih hh

σ ρ σ ρ

α

σ ρ σ ρ

σ ρ σ ρ

σ ρ σ ρ

= +

−

= +

= +

−

= +

⎡ ⎡ ⎤
⎢ ⎢ ⎥−⎢ ⎢ ⎥
⎢ ⎢ ⎥⎣ ⎦= ⎢

⎡ ⎤⎢
⎢ ⎥⎢ −⎢ ⎥⎢
⎢ ⎥⎢ ⎣ ⎦⎣

⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦×
⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥⎣ ⎦

∑

∑

∑

∑

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

In line with the intuition built up by numerous authors since Black
and Scholes (1973), the drift terms in 13, 14 and 15 only depend on
volatilities and correlations. Furthermore, we derived these drift terms
only by specifying the number of nodes, the values of the independent
random variables Y (t) as well as the probabilities—fulfilling the
restrictions of Amin/Bodurtha.

C. Comparison with Existing Specifications

Let us compare the specification presented so far to those existing in
literature: As opposed to the four-node model proposed by
Amin/Bodurtha, in our specification XS is explicitly modeled and not
implicitly as a function of Xd and Xf, so that all combinations of ups and
downs of the three factors are possible.

As opposed to the eight-node path-independent model proposed by
Amin/Bodurtha, in our model specification there are no restrictions on
variances or covariances, which opens the way for numerous models:
e.g., the domestic/foreign term structure dynamics can be modeled by
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means of a Ho and Lee (1986) constant volatility model (i.e., σ (t, T) =
σ), the exponentially decaying variance model (i.e., σ (t, T) = σexp [–λ×
(T – t)]), as shown by Heath, Jarrow and Morton (1992) or the constant
elasticity of variance model (i.e., σ (t, T) = σf (t, T)α) proposed by Cox
and Ross (1976). Recent research in continuous-time modeling of
interest rates (see Ait-Sahalia [1996] or Jones [2003]) investigates 
more  so p h i s t i c a t e d  vo l a t i l i t y  func t i ons  such  a s

. Even these volatility( ) ( ) ( ) 3

0 1 2, , ,t T f t T f t T
βσ β β β= + +

functions can be integrated into the model specification derived above.
To model the exchange rate dynamics a constant volatility model or a
constant elasticity of variance model can be used, to give a few
examples.

Thus, with the model specification presented in the previous
subsections, in contrast to the eight-node path-independent model also
stochastic volatility functions can be included. Stochastic volatility in
interest rate markets is a stylized fact that is widely recognized in the
empirical literature. Many stochastic volatility functions have the
additional advantage that they prevent (or at least strongly reduce the
probability of) negative interest rates (see, e.g., Cox, Ingersoll and Ross
[1985], Heath, Jarrow and Morton [1992] or Amin and Morton [1994]).
Also, including ARCH/GARCH effects inevitably leads to stochastic
volatilities (see, e.g., Kuberek [1992] or Gray [1996] for
ARCH/GARCH models for interest rates).

Another argument speaking for the model specification shown above
(compared to the eight-node path-independent model) is that path-
dependent products (e.g., Asian products) can be valued.

It goes without saying that a path-dependent eight-node model is
computationally less efficient than both a four-node model and a path-
independent eight-node model. This loss of efficiency, however,
represents the price to be paid for the opportunity to use all
combinations of ups and downs of the three factors and non-constant,
even unrestricted, volatilities. The next section shows how to keep this
loss of efficiency small.

D. Depth-first Algorithm

The reason for the restrictive assumptions in the two specifications
existing in literature was to reduce complexity in order to enable a
reasonable implementation. As a matter of fact the tree described above
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8. The model was implemented in C++ and compiled with the gcc 3.3.1 package with
flags –O3 – march = pentium4 – mcpu = pentium4 – msse – msse2 – mmmx. The calculations
were performed on a standard Pentium 4 Linux machine.

9. A period number of x requires a tree depth of x + 1, because we assume to start at
time t = 0.

produces an exponentially growing number of nodes. A simple
calculation of the number of nodes that have to be kept in memory for
10 time steps gives 1,227,133,513 nodes. This implies exponentially
growing calculation times and memory requirements that at this point
can not be satisfied even by the most sophisticated computers. Given 
that each node contains two complete forward rate curves in addition to
an exchange rate evolution it is clear that using a path-dependent model
specification severely restricts the number of feasible time steps.

To solve the memory problem we suggest using the depth-first
algorithm as described in Broadie and Glasserman (1997). The depth-
first algorithm exploits the fact that different branches can be computed
independently of each other. The storage requirement of the depth-first
algorithm is a bxd matrix only, where b is the number of states and d is
the number of time steps. In addition to minimal storage needs, the
depth-first algorithm grants memory access to array data structures
which is usually faster than with tree structures.

In the following, we apply the depth-first algorithm with a time-
independent and state-independent correlation matrix by using two
different volatility settings: The first setting is one with purely
deterministic volatility functions, namely the exponentially decaying
volatility model for interest rate volatility and a constant volatility for
the exchange rate volatility (σd (t, T) = σdexp [–λd (T – t)], σf (t, T) =
σfexp [–λf (T – t)], σS (t) = σS). The second setting is based on stochastic
volatility functions. We use the constant elasticity of variance process
for all three components (σd (t, T) = σdfd (t, T)α, σf (t, T) = σfff (t, T)β, 
σS (t) = σSS (t)γ).

Table 1 shows the time to build the tree and price a financial

instrument or real option.8 In total, for x periods  nodes have to be
0

8
x

i

i=
∑

evaluated.9 Time is denoted in seconds.
The computation times in table 1 show that for a sufficiently large

numbers of periods, pricing with our eight-node path-dependent model
specification is possible at acceptable computation times both with
deterministic volatility functions and with stochastic volatility
functions. Note that with the pruning techniques described in Gautam,
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Broadie and Glasserman (1997) even further speed increases can be
obtained. Therefore, neither a reduction to a four-node model nor a
restriction of volatility functions to obtain a path-independent eight-
node model is necessary with today's computing capacity using the
depth-first algorithm.

V. Conclusion

The Amin and Bodurtha (1995) framework can be applied for many
types of multinational timing decisions, both in the valuation of
American-style financial derivatives and in the valuation of real options
in a multinational context. The purpose of this paper is to present a
readily implementable model specification within the Amin/Bodurtha
framework. As its main benefits, compared to existing specifications in
literature, this model specification allows any combination of up and
down moves of the three factors (domestic interest rate risk, foreign
interest rate risk and exchange rate risk) as well as arbitrary volatility
functions. We derive closed-form solutions for the one-period drift rates
of the three factors in this model specification. We furthermore
demonstrate that the problem of increased computational complexity
can be remedied by means of the depth-first algorithm. Pricing with our
model specification is possible at acceptable computation times for a
sufficiently large number of periods. Thus, the simplified and more
restrictive specifications suggested by Amin/Bodurtha are no longer
necessary using the depth-first algorithm.

TABLE 1. Computation Time Analysis (Time in Seconds)

Number Computation Time Computation Time
of Periods (Deterministic Volatility (Stochastic Volatility

Functions) Functions)

4 0.0000 0.0400
5 0.0300 0.2500
6 0.2300 2.0100
7 1.8100 16.4300
8 14.5700 129.9200
9 115.2300 1024.5400

10 929.3700 8340.3400
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