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An option contract now commonly encountered  is the Asian quanto-basket

option. This contract is useful for risk managers willing to participate to the

return of an industrial sector with an international exposure without the foreign

exchange risk exposition. Although the price of such contracts can be obtained

very accurately using Monte Carlo simulation, market participants prefer faster

but less accurate analytical approximations. This paper thus examines the

precision of three different analytical approximations available to price Asian

quanto-basket options. The results of a comprehensive simulation experiment

performed on a large test pool of option contracts reveal that the approximations

based on the reciprocal gamma and Johnson-type densities are in general the

most accurate. 
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I. Introduction

The world of derivative securities is a constant source of innovation.
This has been particularly true since the beginning of the 1980’s. The
globalization of economies and the increased attention paid to risk
management by both financial and non-financial institutions are
important factors behind this evolution. Within this context, the
instruments proposed to manage the risks associated with different
economic factors have been steadily increasing in number as well as in
complexity. This is why more complex option contracts known as exotic
options were developed during the 80’s. 

With these new option contracts comes the basic problem of having
to price them. Because of their particular characteristics, the pricing
formula proposed by Black and Scholes (1973) is inadequate. In such
cases, adjustments and generalizations are necessary. This is how
various techniques and approximations came to be developed for a large
number of exotic options, including Asian options, basket options,
barrier options, lookback options, quanto options and others. In this
study we examine a type of option contract that is somewhat more
complex than those mentioned above: the Asian quanto-basket option
(AQB hereafter). In a multinational setting, this contract is useful since
it allows risk managers to participate to the returns of a sector with an
international exposure without being affected by the foreign exchange
risk. This contract thus simplifies the hedging procedures designed to
cover the risk associated with a multinational industrial factor since the
exchange risk is eliminated by the quanto feature of the contract. 

Because of the arithmetic Asian and basket features of this contract,
the standard lognormality assumption leads to an expression that cannot
be analytically assessed. Indeed, both features imply the sum of
lognormal random variables, which is clearly not lognormal. In the
literature, several approaches have been proposed to compute the price
of option contracts whose payoffs depend on the sum of lognormal
variables. For example, for Asian options, we find Monte Carlo
simulation (Kemna and Vorst [1990], Fu, Madan and Wang [1996]),
lattice and PDE approaches (Hull and White [1993], Vecer [2001]),
pseudo-analytic characterizations (Geman and Yor [1993], Dufresne
[2000], Bakshi and Madan [2002]), pricing bounds (Rogers and Shi
[1995], Nielsen and Sandmann [2002]) and, finally, analytical
approximations (Turnbull and Wakeman [1991], Levy [1992], Vorst
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[1992], Milevsky and Posner [1998a], Posner and Milevsky [1998]).
Similarly, for the case of basket options we also find Monte Carlo
simulation (Joy, Boyle and Tan [1996]), binomial trees (Rubinstein
(1994)) and analytical approximations (Gentle [1993], Milevsky and
Posner [1998b]). 

There are thus a variety of approaches that can be used to determine
the value of such options. Those working in the financial industry
however, prefer using an approximate analytical solution rather than a
more accurate solution involving lengthy numerical calculations that are
often incompatible with their integrated computer and risk management
systems. Indeed, the risk management process often requires the ability
to price a large book of options quickly. In this context, the precision of
these approximations becomes an important issue. The main
contribution of this study is thus to comprehensively explore and
compare the different analytical approximations available for computing
the prices of AQB options. 

Although some studies have examined the precision of such
analytical approximations for either the Asian or basket option cases, a
small set of parameter values is typically used to make the comparisons.
A more comprehensive study focusing on a large set of the possible
parameter values would thus be welcome since the quality of an
approximation is not always constant through out the parameter space.
It is also important to point out that none of these studies has yet
focused on the quality of these approximations for an option contract
with both the Asian and basket features. It is not clear that the results
found for the Asian or basket case directly apply to AQB case. Indeed,
although the Asian and basket options are closely related because of the
need to average random variables with lognormal distributions, they
show some differences in the correlation structure of the elements being
averaged. As discussed in Milevsky and Posner (1998b), the correlation
structure can have an impact on the quality of an analytical
approximation. Mixing both correlation structures can thus influence the
precision of these pricing approaches. Finally, since the option contract
examined here also shows a quanto feature which affects the drift of the
risk-neutral process of the underlying securities, it uncertain how an
approximation such as the one proposed in Milevsky and Posner
(1998a) will perform since this approach is sensitive to the sign of the
drift. 

Three simple analytical approximations which can be computed in
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1. Two other approximations obtained by replacing the arithmetic mean with a

geometric mean and an adjusted strike price, as done by Vorst (1992) for Asian options and

by Gentle (1993) for basket options, have also been examined in an earlier version of this

paper. However, because these methods were found to be inferior, they were simply discarded

from this version. 

fractions of a second on a standard desktop computer will be examined.
These approaches use approximations of the true unknown risk neutral
density and were developed and applied to problems similar to ours by
Turnbull and Wakeman (1991), Milevsky and Posner (1998a) and
Posner and Milevsky (1998) with the use of a lognormal, reciprocal
gamma and Johnson distributions respectively.1 We exclude from this
comparison the pricing bound approaches that have been developed in
the Asian option pricing literature (see Rogers and Shi [1995], Curran
[1994] and Nielsen and Sandmann [2002]). These bounds, which can be
computed quickly, are usually found to be fairly accurate for Asian
options. However, adapting these to the AQB framework is a non-trivial
task that is beyond the scope of this paper. 

In the next section, the AQB option is described in more details.
Section III will examine the risk neutral pricing model, while Section IV
will derive and examine the different analytical approximations
associated with the use of the pricing model. Section V will present and
discuss the results of a simulation study examining the performance of
the analytical approximations for computing the prices and hedge
parameters. The main results from this study reveal that the two
approximations developed in Milevsky and Posner (1999) are by far the
most accurate. 

II. The Asian quanto-basket option

Below we will examine different types of option contracts, the
understanding of which will help shed some light on the nature of a
quanto-basket Asian option. Unless otherwise specified, we will
suppose that the call options being discussed are European-style
options, that they lead to a cash payment on the date of expiry and that

their underlying assets are composed of equity shares. In what follows, 

indicate the prices at time t of n different domestic or foreign

shares. Note that  is expressed in currency j. 
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Standard option: This option gives its holder the right to acquire share
j on a specific date for a predetermined price K. Its payoff function is
given by: 

(1)

and is expressed in currency j. 

•Arithmetic Asian option: The difference between a standard option and
an Asian option is that the latter uses the average value of the
underlying assets at predetermined dates t1,..., tm rather than the value
upon expiry to calculate the payment amount, this being illustrated as
follows: 

, (2)

and is expressed in currency j. 

Several variations of the Asian option are described in the literature.
These are assessed in terms of mean average, geometric mean, discrete
mean or continuous mean, and also in terms of average underlying value
or average exercise price. In practice however, a few exceptions left
aside, the mean is a discrete arithmetic average applied to the
underlying value. Throughout this article, this last definition will be
used. Utilizing a mean in the payment function protects the holder (or
the writer) from being exposed to the risk posed by ad hoc fluctuations
of the underlying assets. The mean was introduced on financial markets
to protect the different parties from stock market manipulation of
underlying values on or near the expiry date of options. 

Basket option:  A basket option can be seen as a standard option with an
underlying composed of several financial assets, all generally expressed
in the same currency. This underlying is called a basket. Its payoff
function is written as: 

, (3)
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where w1,..., wn are the weights associated with each asset. One of the
main advantages of the basket option is that it allows the coverage of
several underlying assets at a lesser cost than that of purchasing an
option for each underlying asset to be covered. 

Quanto option:  This variety of option is defined in terms of an
underlying made out in a currency other than the currency of the
payment to be made upon expiry, as per the following: 

(4)

where  represents the number of units of local currency by unit of

foreign currency at time t = 0. For the investor, the quanto option allows
indirect investment in a foreign security without being exposed to the
foreign exchange risk. It is also a useful tool for risk managers who
must cover themselves against potential fluctuations in foreign assets.

Asian quanto-basket option:  This option combines the properties of the
Asian option, the basket option and the quanto option. Its payment
function is as follows:
 

, (5)

the total amount paid in a predetermined currency. The fixed exchange
rates are included in the weights. The same as the other types of option,
the AQB option can be a useful tool for the investor as well as the risk
manager. For example, an investor wanting to participate in the yield of
a particular economic sector with international exposure, but not
wanting to be subjected to the currency risk, may be interested in this
type of option. The basket would include shares from the main
companies involved in the industry across the world, and the payment
upon expiry would be made in the investor’s local currency. The Asian
characteristic of the option protects the investor against possible ad hoc
yield fluctuations within the industry. The following example more
clearly illustrates the dynamics of this option.  
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Example: an Asian quanto-basket option (CAN$) related to the aircraft
industry. The basket will include shares from the three largest firms in
the North American civil aircraft industry. To simplify our example,
only three dates were used to calculate the mean. The data pertaining to
the example with three currencies are shown in Table 1. Applying these
figures to date 1 gives a weighted average of 0.25 × 55 + 0.35×18 +
0.4×12 = 24.85 CAN$. Similar computations for date two and three
obtain 28.10 and 30.30 CAN$. Using an exercise price of 26.50 CAN$
gives the following payment upon expiry: 

The following section will develop a theoretical pricing model for these
options. 

III. The Theoretical Pricing Framework

To obtain a pricing model, the methodology suggested in the works of
Harrison and Pliska (1981) will be used. The objective of such an
approach is to assess the expected value of the option upon expiry using
a risk neutral probability measure, and then capitalize it at the risk-free
rate. The model supposes the existence of n foreign shares, n exchange

TABLE 1. Asian Quanto-basket Option Data

                                Price

Security weight date 1 date 2 date 3

Boeing 25 % 55 US$ 60 US$ 65 US$
(United States)
Bombardier 35 % 18 CAN$ 26 CAN$ 23 CAN$
(Canada)
Embraer 40 % 12 R$ 10 R$ 15 R$
(Brasil)
Basket 100 % 24.85 28.10 30.30

(payoff (payoff (payoff 
currency) currency)  currency)
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rates, n risk-free foreign bonds and one risk-free domestic bond, noted
as follows: 

S(j) = {St
(j) : t $0} for the foreign share j, (6)

C(j) = {Ct
(j) : t $0} for the exchange rate j (domestic/foreign), (7)

B(j) = {Bt
(j) : t $0} for the foreign risk free bond j, (8)

D = {Dt : t $0} for the domestic risk free bond. (9)

We also assume that lognormal models are applied to the shares and the
exchange rates. We will thus apply the following hypothesis to the
stochastic processes of these variables: 

(10)

(11)

(12)

(13)

where W(1),..., W(n), Z(1),..., Z(n) are standard Brownian motions with
correlations 

(14)

(15)

(16)

We also suppose that share j pays a dividend (possibly nil) on a
continuous basis and at a constant rate of *j. Finally, each of these
stochastic processes is built on probability space (S, F, F, P) where F
is the filtration {Ft : t $0}, with:
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, (17)

and  the set of zero probability events. This represents a standard

model that is widely used for this type of problem, but nevertheless
entails certain weaknesses, including constant rates of interest and
volatilities. The main advantage of this type of model is that it allows
practitioners to arrive at an acceptable and usable solution that is
realistic enough in terms of empirical observation. If we consider the
fact that an option expires within a relatively short period of time, the
above-mentioned weaknesses lose a lot of their potential influence. 

To find a formula for the price of the option, we need to represent
the price process of the underlying stock using a risk neutral probability
measure that we will refer to as Q. After several manipulations, the
details of which are available upon request, we found that this risk
neutral measure is unique and that the required process is given by the
following stochastic differential equation (SDE): 

(18)

where –"jFjDj,j is an adjustment term for the quanto feature of the option

and  are standard Brownian motions under a Q probability

measure with correlations:

(19)

We thus obtain a differential equation almost identical to that
representing the price of the underlying share with dividend in the
standard Black and Scholes model. In fact, the only difference is the
addition of the term –"jFjDj,j reflecting the quanto characteristic of the
option. This term allows the option price to be adjusted to take into
account the positive or negative effect of the coverage in terms of the
exchange rate. For example, for a given call option, if the correlation
between the share and the exchange rate yields is negative, the
protection against the exchange rate will have a beneficial effect for the
option holder. In this case, the term –"jFjDj,j will be positive, thus
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increasing  and raising the option price. In the case of a positive

correlation, the opposite effect will be observed, as the protection
against the fluctuation in the exchange rate will act as a penalty. This
shows that exchange rate protection is obviously not without
consequences. This model allows us to treat cases where the basket
contains one or more securities made out in domestic currency as well
as cases where several securities share the same currency. For example,
if security k and security j have the same currency, we can use vk = vj,

"k = "j ,  and rk = rj. The pricing formulas thus remain

unchanged. Similarly, if security k is in domestic currency, the model
will include one less exchange rate: 

.

 As equation 18 is simply a standard geometric Brownian motion, the
only strong solution is: 

(20)

j = 1,..., n.

To price a quanto option in our basket, we have to calculate the
expected value of the option upon expiry by using equation 20 to
represent the price of the underlying securities. The next section deals
with the case of the Asian quanto-basket call option. 

A. The Asian quanto-basket call option price

The value of the Asian quanto-basket call option with an exercise price 
and an expiry date T is given by:

(21)

, (22)
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where f(x) is the density function of the arithmetic average, A, of the
underlying basket value on the predetermined dates t1, t2,..., tm. More
precisely:

(23)

where [wj] is the vector of the weights of the securities in the basket and
where the process for S(j) is given by equation 20. Notice that in
equation 22, integrating from –4 to +4 is equivalent to integrating from
0 to +4 since f(x) = 0 for any x < 0 It should also be noticed that there
is no exact solution for expression 21. Indeed, A is a sum of random
variables of lognormal distribution. The integral representing the
density function of a sum of lognormal random variables, f(x) in this
case, cannot be solved analytically. As a result, the price of the option
given by equation 22 cannot be directly assessed. 

A numerical approximation using a Monte Carlo simulation would
allow us to obtain a value that is as accurate as desired. The drawback
of this method however is that it requires lengthy calculations. As
previously mentioned, analytical approximations have a great deal of
value in the financial industry, even if a certain amount of accuracy is
lost in the process. In the next sections, we will examine three analytical
approximations for our Asian quanto-basket option. 

IV. Analytical approximations

We shall begin this section with the calculation of the first four
moments, under the measure Q, of the distribution of the arithmetic
average of the underlying basket of our options. These moments are
used in the different analytical approximations we will examine. 

Lemma 1: The first four moments of the arithmetic mean A under
the risk neutral measure Q are respectively:

(24)
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 (25)

,

(26)

,

(27)

,

where x(i1, i2, i3, i4) represents the xth value of the decreasing ordinate
quadruple (i1, i2, i3, i4). 

The demonstration is omitted as it mainly consists of expressing the
powers of A in terms of multiple summations and of applying the
identity: 

(28)
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For the next three approximations, we will use the following notation:
the expected value as per the density function g, is: 

, (29)

and the kth central moment, in terms of the density function g, is:

(30)

A. The Lognormal Distribution

The approximation developed in this section makes use of Edgeworth
expansions. Jarrow and Rudd (1982) were the first to suggest using
these to solve option pricing problems. The idea consists of using an
Edgeworth distribution to replace a candidate density function with an
approximate density function having the desired characteristics. In the
case of our AQB option, the candidate density function is that of the
lognormal sum represented by f(x). As was done by Turnbull and
Wakeman (1991) and by Huynh (1994), we chose a lognormal
distribution to approximate our sum of lognormals as well as an
Edgeworth expansion of the fourth order. Using these general outlines,
we can obtain the analytical formula below, allowing us to assess the
option price in Appendix 1:

,

(31)

where

(32)

(33)
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(34)

(35)

(36)

and N(@) is the distribution function of a standardized normal
distribution. It should be noted that the third and fourth moments of the
lognormal distribution required to calculate the approximation are
respectively: 

(37)

where  and  are respectively the first two moments of A under

the risk neutral measure. 

B. The Inverse Gamma Distribution

The approximation presented in this section is based on the same
approach as our lognormal approximation. The only difference lies in
the use of an inverse gamma function instead of a lognormal function
in the Edgeworth expansion. This choice is based on the work of
Milevsky and Posner (1998a). These authors demonstrate that under
certain parameter conditions, an infinite sum of correlated lognormal
random variable converge asymptotically to an inverse gamma
distribution. To compute the price of Asian and basket options, they
suggest approximating the distribution of a finite sum of correlated
lognormal with an inverse gamma distribution. 

In Appendix 2 one can see that the analytical formula to assess the
option price is:

(38)
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,

where  is the density function of a random variable of the inverse

gamma distribution,

(39)

(40)

(41)

and G(@| 0, 8) is the distribution function of a gamma distribution with
the parameters (0, 8). It should be noted that the third and fourth
moments of the inverse gamma distribution required to calculate the
approximation are respectively: 

and (42)

where  and  are respectively the first two moments of A under

the risk neutral measure. 
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2. Since , one can show that .

C. The Johnson distribution

The idea of this approach is again to replace the true density function
with an approximate density. Recall that the goal is to compute the
integral of equation 22:

(43)

,

where the last equality is obtain from integration by parts. In this case,
the true density f is replaced by an approximating density chosen among
the Johnson family which is a collection of statistical distributions
parameterized by four quantities. More precisely, if Z represents a
standard normal random variable, then the random variable X where:

, (44)

has a Johnson distribution.  The function N is usually restricted to ln(@)
(Type I) or to sinh–1(@) (Type II).2 The four parameters are determined
to match the first four moments of the original distribution. Therefore:

, (45)

where h(@) is the Johnson density function. Using the type II
distribution, Posner and Milevsky (1998) have shown that:
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3. The values for the stock return volatilities, exchange rate volatilities, correlations

between the stock returns and exchange rates and the correlations between stock returns were

(46)

with

To determine the values of (, *, " and $ which match the first four
moments of the original distribution, we use the numerical algorithm
given in Hill, Hill and Holder (1976). 

V. Performance of the Analytical Approximations

To establish the numerical accuracy of our three analytical
approximations, two simulation experiments are conducted. The first
examines options priced using our analytical approximations and
compares the results of the approximations with those of Monte Carlo
simulations using 1,000,000 trajectories. Although the parameters used
in this experiment (volatilities, correlations, etc.) take on real values,
they nevertheless remain somewhat arbitrary. Indeed, the AQB option
depends on large number of different parameters. Examining
individually the performance of the approximations on all the possible
parameter combinations would be a very difficult task. We will thus
conduct a second simulation experiment prompted by Broadie and
Detemple (1996), which uses random parameters generated from a
realistic set of values. The prices obtained will also be compared to
prices derived again from precise Monte Carlo simulations. The
following paragraphs provide the details of these numerical
experiments. 

Table 2 presents the basic values used to perform the first simulation
experiment.3 For each example, we employed these values with the
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obtained using stock index and exchange rate data from the Datastream database for the

following countries: Australia, Canada, Japan, New Zealand, and Mexico. All exchange rates

are expressed in terms of local currency per U.S. dollar.

exception of an analyzed parameter that we used as a variable. Tables
3 and 4 present the numerical results. In table 3, we used the volatility
of the basket as well as the term of the option as variables. The high and
low volatilities respectively correspond to an increase and a decrease of
50% of the basic volatilities. The results from this table reveal that the
accuracy of the lognormal approximation deteriorates with increases in
volatility and term length. The inverse gamma and Johnson distributions
proved to be very good for all situations presented in this table. Table
4 shows the results obtained for different exercise prices. As in table 3,
the values of the parameters used are those of the basic basket. Although
not reported here, we also examined the effects of other parameters
(exchange rate volatility, number of shares in the basket, correlation
between shares and exchange rate, etc.). The results obtained were
similar to those reported in table 3 and 4.

Finally, to establish the accuracy of the approximations in a more

TABLE 2. Parameter Values Used in Tables 3 and 4

Parameter(s)  Value(s)

Number of securities in the basket 5
Initial stock price 50; 55; 18; 35; 70
Stock prices volatilities 0.17; 0.29; 0.24; 0.24; 0.35
Dividend rates 0.03; 0.03; 0.03; 0.03; 0.03
Exchange rate volatilities 0.14; 0.07; 0.14; 0.12; 0.15
Correlations between the stock price 0.07; 0.15; 0.04; 0.13; 0.29
and exchange rates
Domestic risk-free rate 0.06
Foreign risk-free rate 0.05; 0.05; 0.05; 0.05; 0.05
Weights 0.1; 0.3; 0.2; 0.18; 0.22
Maturities (days) 30; 90; 180; 270
Average Monthly
Strike price (in proportion of the initial basket value) 1.00
1.00 0.11 0.40 0.38 0.16
0.11 1.00 0.11 0.00 0.45
correlations between stock prices
0.40 0.11 1.00 0.24 0.15
0.38 0.00 0.24 1.00 0.06
0.16 0.45 0.15 0.06 1.00
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TABLE 4. Asian Quanto-basket Call Option Prices

Strike  Sim Lnorm Gamma Johnson

30 days to maturity

0.95 2.6223 2.6351 2.6244 2.6230
1.00 1.0835 1.0846 1.0853 1.0856
1.05 0.3092 0.3032 0.3129 0.3113
90 days to maturity
0.95 2.8177 2.8321 2.8159 2.8160
1.00 1.3598 1.3575 1.3604 1.3603
1.05 0.5267 0.5105 0.5268 0.5266
180 days to maturity
0.95 3.1001 3.1238 3.1034 3.1006
1.00 1.7337 1.7264 1.7346 1.7334
1.05 0.8516 0.8270 0.8540 0.8549
270 days to maturity
0.95 3.3395 3.3709 3.3515 3.3457
1.00 2.0376 2.0252 2.0407 2.0378
1.05 1.1417 1.1031 1.1404 1.1415

Note: Strike is the initial basket value divided by the strike price.  Sim is Monte Carlo
simulation with 1,000,000 sample paths. Lnorm is the lognormal approximation. Gamma is the
gamma-inverse approximation and Johnson is the Johnson approximation.

TABLE 3. Asian Quanto-basket Call Option Prices

Basket
Volatility  Sim Lnorm Gamma Johnson

30 days to maturity
low 0.5615 0.5626 0.5625 0.5626
average 1.0835 1.0846 1.0853 1.0856
high 1.6037 1.6045 1.6077 1.6087
90 days to maturity
low 0.7207 0.7202 0.7200 0.7200
average 1.3598 1.3575 1.3604 1.3603
high 2.0013 1.9890 2.0012 2.0008
180 days to maturity
low 0.9365 0.9372 0.9371 0.9368
average 1.7337 1.7264 1.7346 1.7334
high 2.5236 2.4995 2.5344 2.5302
270 days to maturity
low 1.1163 1.1199 1.1197 1.1192
average 2.0376 2.0252 2.0407 2.0378
high 2.9585 2.8995 2.9661 2.9565

Note:  Sim is Monte Carlo simulation with 1,000,000 sample paths. Lnorm is the lognormal
approximation. Gamma is the gamma-inverse approximation and Johnson is the Johnson
approximation.
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general way, we perform an analysis similar to that used by Broadie and
Detemple (1996). The method consists of randomly choosing the
parameters of a large test pool of options within a set of realistic values.
The options are then priced using our analytical approximations and the
obtained values are compared to those of a Monte Carlo simulation.
Table 5 describes the distributions used to obtain the options
parameters. Note that the correlation matrices that are not positive
definite are rejected.  We will measure the aggregate error by the sum
of the root mean square of individual errors (RMS). More precisely, we
will have:

(47)

where m is the number of options included in the study,

TABLE 5. Parameter Choices for the Test Pool of Options

Parameter(s) Value(s)

Number of securities - randomly chosen between 1 and 7.

in the basket - discrete uniform distribution.

Initial stock prices - randomly chosen between 10 and 99.

- continuous uniform distribution.

Stock price volatilities - randomly chosen between 0.1 and 0.5.

- continuous uniform distribution.

Dividend rate - randomly chosen between 0.00 and 0.05.

- continuous uniform distribution.

Exchange rate volatilities - randomly chosen between 0.05 and 0.25.

- continuous uniform distribution.

Correlations between a stock - randomly chosen between –0.7 and 0.7.

prices and exchange rates - continuous uniform distribution.

Domestic risk-free rate - randomly chosen between 0.04 and 0.12.

- continuous uniform distribution.

Foreign risk-free rate - randomly chosen between 0.04 and 0.12.

- continuous uniform distribution.

Weights - equally weighted

Maturities (days) - randomly chosen between among 30 ; 90 ; 180 ; 270.

- discrete uniform distribution.

Average - monthly

Strike prices (in proportion - randomly chosen between among 0.90; 0.95; 1.00; 1.05.

of  initial basket value) - discrete uniform distribution.

correlations between - randomly chosen between –0.9 and 0.9.

stock prices - continuous uniform distribution.
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Ci(a) is the price given by the analytical approximation for option i and
Ci is the price given by the Monte Carlo simulation (500,000
trajectories) for the option i. We fixed the value of m at 5,000 and
eliminate the cases where Ci < 0.50 to avoid the occurrence of too many
relative errors due to a low divisor. We also eliminate the cases for
which the non-linear algorithm for the determination of the parameters
required by the Johnson’s approximation failed to converge (18 cases).
The total number of valid cases after these deletions is 4205. 

For the lognormal approximation, we obtained a RMS = 0.0183 as
well as 113 options with a relative error of more than 5%. This means
that 97.3% of the options priced using the lognormal approximation had
a relative error below 5%. The maximum relative error was of 25.1%.
In the case of the inverse gamma approximation, we obtained a RMS =
0.0071 as well as 5 options with a relative error of more than 5%. 99.8%
of options priced using the inverse gamma approximation had thus a
relative error of less than 5%. The maximum relative error was of
6.98%. Finally, for the Johnson approximation, a RMS of 0.0018 was
obtained. All options were computed with an error bellow 5%. A
detailed analysis of the results revealed that the most important factors
for explaining the pricing errors were large values for the maturity and
basket volatility. 

In addition, we have also examined the precision of the delta
associated with each method. These quantities are computed
numerically. More precisely, for each pricing method, we add a small

quantity g > 0 to each security included in the basket: . We

obtain a new approximation for the option price denoted  and

compute numerically the first derivative with:

(48)

The results for these quantities are in line with those obtained for the
prices. The RMS for the lognormal, gamma and Johnson are 0.0306,
0.0128 and 0.0061 respectively. Again, a detailed analysis showed that
the large errors are mostly associated with large maturities or large
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basket volatility. 
In summary, the analysis reveals that the Johnson approximation is

the most precise method and should be preferred to the lognormal and
gamma inverse approximations. It should be pointed out, however, that
the convergence associated with the non-linear algorithm required by
this approximation should be monitored closely. Although a failure to
converge does not occur frequently, it is still a possibility that might
lead to substantial errors if undetected. Our second choice is the gamma
inverse approximation which also shows very good results that are well
within the precision required by many practical situations. 

VI. Conclusion

The Asian quanto-basket option is a contract allowing an investor to
participate to the return of an industrial or economic sector with an
international exposure without the foreign exchange risk exposition.
Since the payoffs of these contracts involve sums of lognormal random
variables, no analytical solution is available to compute its price. We
have thus examined here the precision of three different analytical
approximations which can be computed in fractions of seconds for the
Asian quanto-basket option. Using a large test pool of options, the
Johnson distribution was found to be the most accurate approximation
followed by the inverse gamma. For both approximations, the
magnitude of the pricing errors appears to be well within the tolerance
level required by many practical applications. 

Appendix Analytical Approximations

Appendix 1. Lognormal Approximation

This section provides the derivations associated with the results presented in

section 4A. Let a(x) be the lognormal density of the random variable

 which is chosen as an approximation for f(x). We

can show (see Jarrow and Rudd [1982, p . 366]) that f(x) can be written as the

following Edgeworth expansion: 

(49)
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,

where the centered moments  are defined in equation 30 and g(x) is an error

term. In general, no analytical behavior can be attached to this error term. Since

a lognormal distribution is entirely described by its first two moments, we

choose function a(x) such that the first two moments are identical to those of

f(x). Hence,  and  must be equal to the expressions given in equations 35

and 36. W e can thus rewrite equation 49 as follows: 

(50)

We define the third approximation as V lognormal : 

=V lognormal.

Using the following identity 

, (51)

(see Jarrow and Rudd, 982, p. 355), we obtain: 
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(52)

The first term in this equation if the Black-Scholes formula since the integration

is performed with respect to the lognormal density. The centered moments of

the lognormal distribution are easily obtained from the first four moments of .

Hence,

(53)

(54)

(55)

(56)

Those associated with f can be found from lemma 1.

Appendix 2. Gamma-inverse Approximation

This section provides the derivations associated with the results presented in

section 4 B.  As for the lognormal distribution, the gamma-inverse is entirely

described by its first two moments. We thus choose the gamma-inverse function 

such that the first two moments are identica l to those of f(x). Because of this, our

approximation will be defined in a similar fashion as the one provided in

Appendix 1, that is:

(57)

.
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Definition 2: The density function of a gamma random variable with

parameters(", $), , is given by:

(58)

where " > 0, $ > 0 and '(") is the gamma function. 

Proposition 3: The density function of the random variable Y = 1/x

where  is given by: 

(59)

We will then say that Y will have a gamma-inverse distribution written

as . 

Proposition 4. Let . The moments of Y are given by: 

, (60)

where i < ". 

We thus have to choose a gamma-inverse distribution such that its first two

moments will be  equal to the first two moments of A. Let 

(61)

Since 

(62)

then 

(63)
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Using the change of variable y = 1/X, we can rewrite the first term as: 

, (64)

where G(@| 0, 8) is the distribution function of a gamma with parameters (0, 8).

Finally, the approximation uses the first four moments of the gamma-inverse

distribution. By construction, its first two moments are  identica l to those of Y.

We thus derive here the third and fourth moments of Y:

(65)
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