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The selection of an appropriate parameterization of data is a fundamental

step in a majority of empirical research effort. Likewise, detecting or estimating

features of non-stationarities in data sequences is a critical point in conducting

credible research that uses data for inference. In this spirit, this paper presents

a simple decomposition of the empirical return distributions of financial assets

into the sum of various normal distributions. The decomposition is motivated

by the fact that market participants expect distributions to be drawn from two

or three possible scenarios. It is also motivated by the recent applications of the

EM algorithm to financial data. A parametric and a nonparametric approach are

proposed and applied to the empirical distribution of the CAC 40 index traded

in the  Paris Bourse. We estimate the parameters of the mixture and propose a

decomposition into three Gaussian distributions which essentially differ by their

variances. The decomposition fits the observed distribution.

An alternative approach, which consists in detecting these changes and

estimating the distribution of the returns between two changes is developed.

The results are obtained using a segmentation method , which is applied to

financial data. One of the main findings in this paper is that the two approaches

show the same results and give support to the proposed decomposition. There

exists three kinds of regimes in the Paris Bourse and the series of the returns

jump from a regime to another one at some random instants. This work might

be applied to o ther data sets or other data generating conditions. It can used for

the valuation of standard and exotic derivatives (JEL G10, G12, G13).
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I. Introduction

The observed returns distributions of financial assets are central
elements in the pricing of securities. On the one hand, models of capital
market equilibrium study the equilibrium structure of asset prices and
its connection with empirical anomalies. On the other hand, option
pricing models show empirical biases as the strike price bias or the
smile effect. Since pricing models based on the log-normality
assumption reveal several biases, the use of a mixture of normal
distributions might help to reduce some of them. The mixture
assumption was used by Ritchey (1990) to derive European options
prices when the probability density function (PDF) is a mixture of
lognormals. Melick and Thomas (1997) estimate the distribution for
crude oil during the Gulf crisis and show that it differs from those
recovered using standard techniques. The approach used in Melick and
Thomas (1997) gives an intuition to our decomposition. They find that
the shape of the distribution in the tails depend importantly on the
functional form assumed for the distribution and illustrate this point
with three observationally equivalent distributions. Their results show
that the fitted values from a mixture of three lognormal distributions
(MLN) and a single lognormal (SLN) explain the pricing errors of SLN.
The converse is not true since the data and MLN reject SLN, but MLN
can not be rejected. Lekkos (1999) estimates the probability densities of
interest rates using the kernel density estimation method in Ait-Sahalia
(1996). This method allows one to identify the "true" non-parametric
density function of spot interest rates. The density estimates reveal that
there is no standard univariate  distribution and there is evidence of
multimodality.

The first purpose of this paper is to provide a simple decomposition
of the observed distributions into standard normal distributions using
alternative approaches. Mixture distributions have received a particular
attention in the statistical literature, because of the large number of
applications (see  Titterington et al. [1985] and Everitt and Hand
[1981]). Many authors considered the problem of estimating the order
and the parameters of the mixture (see Basford and McLachlan [1985]
and Leroux [1992]). The well known Expectation Maximization
algorithm, (EM algorithm) proposed by Dempster, Laird and Rubin
(1977) can be used for computing the maximum likelihood estimate of
the means and variances of a Gaussian mixture (see  Redner and
Walker, [1984]). For different numbers of components the EM
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algorithm can be applied in the estimation of the marginal distribution
of the returns. For the sample used in our study, it turns out that the use
of three normal distributions fits very well the empirical marginal
distribution of the returns. It is well-known in stock markets that rare
economic events like bad news can generate sudden falls in stock prices
and the possibility of an offer in the market of corporate control can
produce higher stock prices. Therefore, market participants expect
distributions to be drawn from some possibilities. This is the main
difference with respect to the interest rate market since interest rate is
not a tradeable asset. It is expected that the possibility of three regimes
in the stock market can lead to a mixture of three distributions rather
than two distributions. A mixture of three normal distributions is
expected to provide a better fit to the data than the standard normal or
lognormal distributions. Here, the data is a time-series, and the time
dependence should appear in the model. A widely used approach
consists in assuming that the observations follow a mixture model with
Markov regime (see Leroux [1992],  Ryden et al. [1997]). In that
context, the main problem consists in recovering the Hidden Markov
Chain that indicates in which state the Chain is at any instant. 

We shall adopt another approach, which consists in detecting the
sudden changes of regime, and in locating their positions. A wide
literature is dedicated to the detection of abrupt changes in a time-series
(see Yao [1988], Basseville and Nikiforov [1993], Lavielle and
Moulines [1999], Lavielle [1999]). In our context, this method can be
useful for financial analysts in portfolio selection and asset's analysis
because the location of changes is an important piece of information in
portfolio management.

An application of the procedure for change-point detection proposed
by Lavielle (1998, 1999) to our data set confirms that the returns in the
financial market follow three regimes. These three regimes correspond
to the three normal distributions estimated in the market place.

We develop a method which provides a simple decomposition of the
observed distributions of securities prices into standard normal
distribution and propose a method that can detect the changes in the
means and variances of the distributions. The decomposition into
standard normal distributions allows us to get as close as possible to the
observed empirical distribution. For illustrative purposes, the CAC 40
data are used but the method can be applied  to other market data.  In
particular, it can be used in the VaR calculation improving the
methodology proposed by JP Morgan in RiskMetrics. In fact, the
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1. The authors thank the referee for suggesting this application.

standard calculations of VaR for portfolios of assets are based on the
normal or lognormal assumptions while it is well known that assets
returns are multimodal. The sample used comprises CAC 40 index
prices and is well explained by a mixture of three normal distributions.
It turns out that the returns in the market place follow three  regimes,
corresponding to three normal distributions with different
characteristics. We find that the estimated distributions are consistent
with the market reaction to information, in that they reflect the
probabilities of major disruption. Our methodology for the detection of
changes in the means and variances of the distributions is new and has
not been often applied in the financial literature. Some intuitive
explanations are given for the observed mixture of normal distributions.

We propose also algorithms that facilitate a decomposition and
allow an exact fit to the observed distribution.

The structure of the paper is as follows. Section 2 poses the problem
of choosing between several distributions in the modeling of securities
returns. This allows us to justify the use of empirical distributions as a
starting point in the search for an appropriate distribution for financial
assets returns. Section 3 presents a simple decomposition of the
distribution of returns into normal distributions. Using the returns on the
CAC 40 index, two procedures are proposed. The first is based on a
nonparametric estimation. The second approach uses a parametric
estimation. Both approaches provide the same result and  support the
decomposition. Since this question is important for financial research,
we address the issue both non parametrically by using a kernel estimator
and parametrically under a mixture of normals hypothesis. The
nonparametric approach seems to dominate the parametric approach.
We develop  a procedure for the detection of changes in the distribution
of returns and compare our results with the existing literature. Section
4 suggests an application  of this method for the valuation of derivative
assets.1

  
II. Characterizing Empirical Distributions

Models based on frictionless markets and complete information might
be inadequate to capture the complexity of action in financial markets.
Some factors and constraints, like transaction costs, information costs,
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restrictions on short sales, entry into the dealer business, the probability
attached to a merger or an acquisition, among other factors, may
influence the short  run behavior of security prices (see Bellalah [1999
a, b, 2000]). However, most models developed in financial economics
do not explicitly account for these factors, nor their effects on the
distributions of  securities prices. Therefore, the log-normal assumptions
are often used for the dynamics of financial assets. These factors can
lead to multimodal distributions and play a central role in capital
markets, by affecting the distributions of returns. Market participants
use different models when pricing, hedging and managing risks in their
portfolios. They spend huge amounts of money to implement new
models that "stick" to market prices. This facilitates the management of
financial risks contracted by individuals and financial institutions at the
micro-structure  and macro-structure level. For example, since the price
of a derivative security depends on the dynamics of its underlying asset,
its expected rate of return might depend on the  factors corresponding
to market imperfections. When integrated into theoretical pricing
models,  these factors considered as market imperfections have the
potential for explaining reported  observed biases in  standard models.
Unfortunately, some mathematical  difficulties and the lack of an
economic rationale in modeling the complex financial system  prevent
the financial economist from  elaborating a model that "fits" the
observed behavior of financial assets prices. Therefore, a decomposition
of observed multimodal distributions into normal distributions might be
useful in dealing with financial risks and risk management. This offers
a starting point that allows the derivation of financial models which
account for the presence of skewness and kurtosis in the distribution of
financial returns.

The EM-algorithm has been one of the most successful methods of
estimating when the data under study are incomplete. It has been applied
to resolve missing data problems involving financial time series. Also,
since the second quarter 1996, RiskMetrics monitor introduced the
normal mixture model of returns that was found to more effectively
measure the tails of selected return distributions. This allows for a larger
probability of observing very large returns than the conditional normal
distribution.

Many professionals think that the VaR number (obtained from
internal VaR models or the models provided by JP Morgan) can be used
to aid managers in the understanding of their risk position. In practice,
the management of an individual trader's book position requires more
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careful considerations of the risk parameter sensitivities than the single
VaR number. This is important for the management of the option price
sensitivities or "Greek" letters. However, the models used for the
pricing of derivatives do not account for the non-normal features of the
distributions of returns. According to Choudry (1996), market crashes
and options pose essentially the same problem when calculating VaR.
Recall that in the original form of JP Morgan's RiskMetrics, the returns
on the underlying portfolio are normally distributed. In this context,
90% of the returns fall within more or less 1.65 standard deviations (the
5th and 95th percentiles) of the mean return. The VaR gives in this
setting the maximum probable loss on a portfolio under market
conditions. One of the methods to overcome the normality assumption
and to account for real world distributions is to resort to stress testing
and scenario analysis. When the effects of gamma risk (the derivative
of the delta) are included in the calculation, the portfolio returns become
asymmetric or skewed. In this case, it is possible to include the effects
of the gamma for example by calculating the VaR on the basis of a
skewed distribution of returns using  one of the three following
solutions. The first considers an approximation of the skewed
distribution by a deformed normal distribution.The second needs the
calculation of the 5th and 95th percentiles from the skewed distribution.

The third is to try to fit the skewed distribution to a more general
family of distributions with known statistical characteristic measures.
To circumvent these difficulties, it is more interesting to integrate
implicitly these considerations in the valuation process of financial
assets and derivatives. This can be done by searching for mixed
distributions. Lekkos (1999) uses interest rate data and shows that the
component distributions were not distinct enough. For this reason, he
uses the EM algorithm and assumes that the components exist in a fixed
proportion in the mixture of distributions. His study shows that the
mixture of two normal distributions provides a better fit to the data than
the standard normal or the lognormal distribution. In reality, the work
on the mixture-of-normal hypothesis is not new and goes back a long
time, e.g., the work of Press (1973), Blattberg and Gonedes (1974) and
Kon (1984) among others. The related work on subordinated process
modeling can also be traced to the seminal paper of Clark (1973). Two
common approaches are often used in the financial literature to study
the distribution of securities returns. The first approach describes the
stochastic processes that give rise to the returns corresponding to a
given distribution. Work in this area include Epps and Epps (1976),
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Tauchen and Pitts (1983), Samorodnitsky and Taqqu (1994) among
others. The second approach tries to represent in a usable form a
distribution function which fits empirically the observed return
distribution in a given financial market. This line of research is used in
Fama (1963), (1965) and Mandelbrot (1963) among others. The
literature based on mixed distributions uses the first approach. It studies
the market process for security prices and puts the accent on the
relationship between several market variables as the volume of trading,
the price variance, etc. This approach allows sometimes the
identification of some well defined distributions. But, when the trading
process is studied in detail, it leads to distributions that have no explicit
form and hence can not be represented or used in practice. Besides, this
literature says nothing about the "shape" of the observed distribution. If
this approach is implemented in asset pricing, the main difficulty is the
following: how to identify and how to "match" a given stochastic
process with an observed empirical distribution?

This question is important because the identification of a given
stochastic process that "matches" the observed distribution allows one
to build pricing models which give prices that fit market prices. This
might allow the elimination of empirical anomalies observed when
testing pricing models.

In the second approach by Mandelbrot (1963), the accent is put on
the fat tails and the peak of the distribution of returns. It is often
observed that there are thicker or thinner right or left tails and a higher
peak than the log-normal distribution. However, no study explains why
the distribution takes one form or an other and why there are
"deviations" with respect to the log-normal distribution. The main
distributions reported in the literature in this context are the symmetric
stable distributions. These distributions "fit" the observed distributions
and show some interesting properties. However, it appears that they
remain until (1987) only as an empirical description of the fitted
distributions. They present a generalized distribution for describing
security price returns: the generalized beta of the second kind, referred
to as the GB2. This distribution can be interpreted as a mixed
distribution. Bookstaber and McDonald (1987) conclude that the
hypotheses of a mixed distribution merits further investigation. Since
then, several papers were published on this subject but none offers a
simple decomposition of the empirical distributions. Besides, several
problems are encountered for giving analytic expressions or estimating
the distribution parameters. Longin (1996) studies the asymptotic
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distribution of only extreme stock market returns (minimal and maximal
returns). He determines the degree of fatness of the distribution and
finds that the mean and  variance are finite but the skewness, the
kurtosis and all higher moments may be infinite. When these higher
moments are infinite, this poses a difficult problem to the researcher
who intends to account for these moments in deriving capital asset
pricing models or option pricing models. Other studies on Banking
supervision, regulation and bankruptcies use the extreme value theory
where risk is measured by extreme value statistics rather than the usual
measure of variance (see Longin [1996] and Dimson and Marsh [1995]).

The changing character of volatility over time is an important feature
in the study of financial returns.  Since some years, the emphasis has
shifted towards the use of asset pricing models where agents' decisions
are based on the distribution of returns conditional on the available
information. Researchers account for the time variation in first and
second moments of returns since the work of Engle's (1982) on
Autoregressive Conditional Heteroscedasticity (ARCH)  and
Bollerslev's (1986) Generalized ARCH (GARCH). Several applications
and variations of these models can be found in Engle (1987), and
Koutmos, Negakis and Theodossiou (1993) among others.

The EM algorithm is used for conditionally heteroskedastic factor
models in Demos and Sentana (1998). Why not taking directly the
empirical distribution and using simple decompositions based on normal
distributions?  Some studies adopted this line of research which is
highly relevant since this problem has been vexing researchers for a
long time.(Ritchey [1990], Melick and Thomas [1997] and Lekkos
[1999]). Our methodology gives an answer to the above question by
adopting two approaches: a nonparametric approach and a parametric
approach. The results are confirmed using a segmentation method. 

III. The Decomposition of Empirical Distributions and the
Detection of Changes

This section develops two methods for the decomposition of the
distribution of returns into some normal distributions. The first is a non-
parametric approach. The second is a parametric estimation. The
decomposition method is done using a data set from the Paris Bourse.
We propose a model which allows to detect systematically the sudden
changes and which locates their positions. This method allows also the



107Empirical Distribution and Evaluation of Derivatives

estimation of the distribution of the data between the abrupt changes.
The analysis gives an answer to the two following questions:

What is the shape of the empirical distribution of the CAC 40
index (or the stocks) traded in the Paris Bourse?

Can we decompose the empirical distribution into normal
distributions?

The answers  need  the use of empirical data regarding the CAC 40
index or the returns of some stocks.

In stock markets, rare economic events like bad news can generate
sudden falls in stock prices and the possibility of an offer in the market
of corporate control can produce higher stock prices. Therefore, it is
expected that the possibility of three regimes in the stock market can
lead to a mixture of three distributions. The mixture is expected to
provide a good fit to the data. The three-regimes hypothesis is
appropriate for stock indexes and stocks because of the possible three
outcomes in the market: a normal regime, a sudden fall in asset prices,
a sudden increase in the prices of these assets. Market participants  feel
that prices are likely to be drawn from a tri-modal distribution in which
each distribution reflects an equity market event.

The tests are conducted using the daily CAC 40 index from January
1988 to December 1990.  The data set comprises the stocks and the
CAC 40 values corresponding, to the open, the close, the highest,  the
lowest and the bids and asks for the futures contract on the CAC 40
index during each trading day as well as the amounts of cash
distributions. The CAC 40 index is a market-capitalization weighted
index of the forty major French companies listed on the French market
(RM) (see Briys, Bellalah et al [1998] and Bellalah [2000 b]). It is
important to note that the index is adjusted for stock dividends and
splits but not for cash dividends. For this reason, dividends are excluded
from the daily return calculations.

A. Non-parametric estimation of the distribution of the CAC 40 index.

The empirical distribution corresponding to the CAC 40 index is
displayed in figure 1 in two usual forms: an histogram in figure 1-a, and
a continuous density estimate in figure 1-b. In fact, the distribution of
the returns is clearly continuous while the histogram presents
discontinuities. To overcome that, a smoothed version of the histogram
can be proposed as an estimate of the probability density function f of
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FIGURE 1.—Panels a through d.
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the returns. This kind of estimated is called kernel estimate. Various
kernels can be used in this context. In the particular case of a Gaussian
kernel, the kernel is defined by:

(1)

where x1, ..., xn are the observations and F2 is a parameter that adjusts
the smoothness of k. If F2 is too small, the estimated function is very
rife. On the other hand, some details will disappear with a too big value
of F2. In our example, we set F2 = 4 × 10–6.

The empirical distribution seems symmetric around zero. The

empirical mean is = 1.13 × 10–4, while the empirical variance is
s2=1.86 × 10–4. Then, we estimate the standard-deviation of the

empirical mean  by  3.12 × 10–4 (since n =1908 in this

example). A 90% confidence interval for the mean of the returns is [–4
× 10–4, 6.26 × 10–4] and consequently, we accept the hypothesis that the
returns are centered.

B. Parametric estimation of the distribution of the CAC 40 index

If we try to adjust a Gaussian distribution to the data, with a mean 
= 1.13 × 10-4 and a variance s2 = 1.13 × 10–4, the fit would not be
perfect. Figure 1-c shows the density of such a distribution and figure
1-d gives a comparison with the empirical distribution.

Some intuitive reasons might be advanced to explain the observed
shapes of the empirical distributions for the CAC 40 index and the
empirical distributions of stocks returns in the French market. These
reasons may apply as well to the distributions observed in other stock
markets. First, since financial assets have always a pay-off which is
greater or equal to zero, and assets holders have limited liabilities, the
maximum gain from holding a financial asset may be infinite while the
maximum loss is restricted to the amount invested in securities. This
asymmetric property regarding the gains and losses may justify an
asymmetric distribution of asset prices or returns. Second, since the
mean return is not a measure of risk, it does not determine the shape of
an empirical distribution. Third, since the process of adjustment of
expectations regarding the cash-flows of the firms (dividends, coupons,
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and other distributions)  is rather "smooth", this produces a different
"speed" in the market reaction to information revelation. Hence, there
may be a tendency in the market to go up slowly and to fall down
suddenly. This case is more pronounced in situations of "panics",
financial crashes or mini-crashes where the psychological factor plays
an important role, which is not modeled in financial economics. Even
if one argues that this explanation is not entirely true, there is a
tendency for the volatility to rise when the market falls and to fall when
the market rises. These reasons might explain the presence of three
possibilities in the market place, which can be reflected in the presence
of a mixing of three or more distributions as suggested by the referee.

It is possible to adjust a parametric distribution to the data by
assuming that they represent a mixture of Gaussian distributions:

(2)

with

where, pk represents the fraction of the population k, mk its mean and

 its variance while K is the number of  populations. A difficult

problem arises at this level. In fact, how can  K be chosen and how to

estimate the parameters  2 = (p1, m1, ,..., pK, mK, ). It is clear that

the adjustment of the empirical distribution is better when the number
of  populations K is high as well as the number of parameters. On the
other hand, we have to search for a parametric distribution with a few
parameters to be estimated. Therefore, a trade-off must be found
between both criteria, i.e; a number K of populations as small as
possible which allows at the same time a good adjustment and a good
fit to the observations. When K is given, the value of 2 can be estimated
by applying the maximum likelihood criteria or by maximizing the
likelihood of the observations: 

. (3)
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This is a difficult numerical problem which can be solved by
optimization methods. A solution to this problem  is given in Dempster,
Laird and Rubin (1977) who provide the E-M (Expectation-
Maximization) algorithm. Table 1 gives the values of the estimated
parameters for  K = 2 and  K = 3. The corresponding densities are shown
in figure 2. 

A careful examination of figure 2-b, shows that the adjustment of the
empirical distribution for  K = 2 is quite good. The distribution  of the
data seems to be well  approximated by a mixture of Gaussian
distributions with a zero-mean and different variances.

(4)

When the number of components is  K = 3, an improvement can be seen
in the adjustment of the empirical distribution (figure 2-d). Here, also,
the distribution of the data is approximated by a mixture of Gaussian
distributions with a zero-mean and different variances:

(5)

At this level, it is important to note that there is no strong statistical test

TABLE 1. Estimation of the Parameters of a Mixture of Normal Distributions
with K Components

K k pk mk

1 1 1.00 1.1×10–4 1.9×10–4

2 1 0.89 4.8×10–4 1.2×10–4

2 0.11 –28.6×10–4 7.3×10–4

3 1 0.54 –3.3×10–4 2.0×10–4

2 0.42 9.4×10–4 0.7×10–4

3 0.04 –24.4×10–4 12.2×10–4
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FIGURE 2.—Panels a through d.
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which allows to choose between the numbers of components 2 or 3.
However, it is possible to assert that the adjustment is good in both
cases. The analysis and the explanations of the results by a specialist of
a particular financial market having more information about the data
would probably give more concrete sense to the numbers K = 2 or K =
3 and to the values of the estimated  parameters.

Comparison of the estimated values of the kurtosis (3.97) and the
skewness (–0.32) with the theoretical values obtained with K = 2 (3.17)
and K = 3 (3.73) reinforce the hypothesis of three different regimes. On
the other hand, the skewness is not really informative since the
estimated value (– 0.22) and the theoretical values obtained with K = 2
(–0.24) and K = 3 (–0.17) are very close.

The first two populations are more represented (55% and 41%).
They can be thought of as representing two normal regimes: a stable
period and a more turbulent period. The third population is less
represented  (environ 4%) and exhibits a higher variance when
compared to the other two populations. It characterizes more variability
in the data and corresponds to a more turbulent period. It may refer to
financial crisis, panics, crashes or mini-crashes, etc. These results seem
to indicate the existence of three different periods in the pattern of the
market volatility: a period of high volatility, a period of low volatility
and a period of a stable volatility. 

These three periods can be easily identified in the short or in a long
run.  Also, the three different scenarios of volatility in the financial
market, may correspond to the different empirical distributions of assets
returns which alternate through time. In fact, since market prices
account for the probability of rare events, this induces an asymmetry in
the distribution of returns and produces even fat and asymmetric tails
with comparison to the returns of a normal distribution.  A fat tail might
correspond to the probability of a crash in the financial market or the
probability of a takeover. When the market expects a sudden fall, the
probability of a crash or a mini-crash is included in the distribution of
asset prices. This probability may correspond to a very bad news
announcement, liquidity shocks, banking problems, speculative bubbles,
market structure deficiencies, asymmetric information, etc. The above
reasons might explain the shapes of the empirical distributions observed
in financial markets and the existence of the three regimes. The
empirical distribution seems to be a superposition of three different
normal distributions: one representing the normal regime corresponding
to the central distribution and two other distributions corresponding to
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the tails of the empirical distribution. The first may represent the
probabilities of crashes or sudden falls in the assets prices. The other
tail may correspond to the probabilities of takeovers in the stock market.
Hence, to each of the observed regimes, a normal distribution can be
associated. The superposition of these distributions gives rise to the
observed empirical distribution. The main question at this level is the
following:

Can the periods of high risk be identified independently of the
theoretical distribution used and the  measures of risk?

If an algorithm of detection is proposed, then it would be possible to
identify the periods  of high volatility, corresponding to market crisis
and panics. Contrary to the previous literature, we are able to provide
a method which allows one to detect the changes in the regimes in the
market place. Now, we provide an answer to this issue and apply our
method to the CAC 40 index.

C.  Detection of changes in the distribution of the returns

The previous analysis shows that the general method of decomposition
allows the standard distributions to be replaced by any distribution from
within a wide class. We have not imposed a particular assumption for
the mixture of two or three distributions. A remark must be done at this
level of our analysis: the data corresponds to a time-series and not to a
sample in which the indexes are interchangeable. If we look to a part of
this time-series  (figure 3-a) comprising 400 observations, it is clear that
the time-series is not stationary: the distribution of the data is not
independent of time. In fact, the mean of this sub-sample seems to be
zero but the variance can vary sometimes suddenly. For example, in the
region  70-90, the dispersion of the data is more important than for the
other data in the sub-sample. The time-series can not be modeled as a
stationary process but rather as a stationary process with segments.
Some abrupt changes affect the variance of the time-series at random
times, but the distribution of the data does not vary between two
successive sudden changes. We propose a model for  detecting  the
sudden changes and which locating their positions. Let X1,..., Xn be a
sequence of observations. This sequence is composed of an unknown
number of segments for which the distribution does not vary. Let c1,...,
cL–1 be the instants corresponding to abrupt changes. Let c0 = 0 and cL

= n. Let's denote by XR the vector of observations from the segment R:
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FIGURE 3.—Panels a and b.

For any R  > 0, let  where :R is the mean of Xi and  is

the variance of Xi in the segment R, i.e; for cR–1 +1 # i # cR. 
When the form (configuration) of the abrupt changes c = (c0,..., cL)

is given, 2R can be estimated in the segment R by  minimizing  the
contrast function U(XR, 2R) defined by:

(6)

where nR = cR – cR–1 is the length of the segment R.
This gives the empirical estimations of the mean and the variance:
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(7)

(8)

When c is unknown but the information regarding the number of
segment L is given, c and 2 = (21,..., 2L) are estimated by  minimizing
the contrast function V(c, 2) defined by:

(9)

It must be noted that the number of abrupt changes is rarely known.
However, we can estimate the configuration of the changes c and the

number of segments L using the penalized minimum contrast estimator 

that is obtained by  minimizing the function  W defined as:

(10)

where $ is a positive parameter. The procedure is intuitively simple: the
adjustment criteria must be compensated for in a way such that the over-
segmentation be penalized. However, the compensation must not be
very important in a way such that it over-estimates the  number of
segments. In practice, the parameter $ must be fixed to some arbitrary
value. When the parameter  $ is chosen to be very large, only the more
significant abrupt changes are detected. However, a small value of  $
produces a high number of the estimated changes. Therefore, a trade-off
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2. Some practical considerations for the choice of $ are proposed by Lavielle (1998).

must be done, i.e, we have to select a value of $ which offers a
reasonable level of resolution in the segmentation.2  Hence, we can
show under some general hypothesis that the form (configuration) of the
estimated abrupt changes  converges to the true configuration of the
changes when the number of observations n increases. We can show
also that the estimated parameters converge to the true parameters.
When the changes affect the mean of the process, Lavielle and Moulines
(1998) also derived the limiting distribution of the estimate of the
change-point instants. The main theoretical results are presented in the
Appendix. The segmentation proposed in  figure 3-b is obtained with a
value of $ = 20. It reveals four segments four which the values of the
estimated parameters are given in table 2. 

We can see that there are no sudden changes in the mean return since
the mean is often very close to zero. However, we detect three regimes
in the variances  of returns. The first regime corresponds to the first and
the fourth interval on figure 3-b. It may refer to the normal regime of the
volatility in the market place.  This refers to stable periods. The second
regime corresponds to the third interval. It shows more volatility than
the normal regime and corresponds to turbulent periods. The third one
corresponds  to the second interval. It is over a very short interval and
corresponds to chocks in the volatility. It is interesting to note that the
results given by this segmentation method are exactly in accordance
with those presented in the previous section. The time-series of returns
seem to fit well the modeling by an alternance of three regimes. The
passage from one regime to another is done in a stochastic way at
random instants of time. For each of these three regimes, the
distribution of the returns follow a Gaussian law with a zero mean.

TABLE 2. Estimation of the Length and the Parameters in the Different Segments
Obtained with the Algorithm of Detection of Changes

segment R

1 65 –11.1 × 10–4 0.9 × 10–4

2 22 –109.6 × 10–4 20.7 × 10–4

3 146 8.9 × 10–4 3.0 × 10–4

4 167 16.7 × 10–4 1.1 × 10–4
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Hence, we are in the presence of a mixture of three distributions with
different variances.

It is important to note that in the segmentation method, we do not
impose the number of mixing distributions. We find three regimes that
give support to our early decomposition.

Now, a comparison is possible between our findings and previous
work in this area.In the financial literature, the EM algorithm has been
applied to our knowledge by Melick and Thomas (1997) for commodity
prices, Lekkos (1999) for interest rate data and Demos  and Sentana
(1998) among others for factor models. Some financial institutions use
the algorithm to handle the problems of missing data. The first study
finds that the distribution of return fits well a mixture of three
distributions. The second study assumes that the distribution of return
fits well a mixture of two rather than three distributions. Our analysis
applies the EM algorithm to stock returns using a new data set. Our first
method, based on parametric and non-parametric approaches, show that
there is a good fit of the empirical distribution using two or three normal
distributions. In both cases, the fit is quite good. It is important to note
that none of the above studies uses a stationary process with segments.
Our model allows to detect systematically the sudden changes in the
returns and locates their positions. In this model, the configuration of
the changes and the number of segments are not known and can be
estimated using a penalized minimum contrast estimator. We have
shown somewhere how under general hypothesis the configuration of
the estimated abrupt changes converges to the true configuration of the
changes and that the estimated parameters converge to the true
parameters. We have also derived the limiting distribution of the
estimate of the change-point instants.

By applying this method, we find three regimes in the variances of
returns. The results confirm our findings using the parametric and non-
parametric approaches.

While these approaches are based on the assumption that the returns
are generated from two or three possible scenarios in the market place
(stable periods and turbulent periods), our segmentation method is
independent from any prior assumption.

The above studies do not use the segmentation method in the
analysis of the distributions of returns. The application of the
segmentation method allows to detect the changes in returns from more
recent data. This information can be useful is portfolio decisions, asset
allocation and risk management. In fact, the use of the more recent
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3. For more details, the reader can refer to Das and Sundaram (1999) and the references

therein.

information in financial returns can provide signals to portfolio
managers to take the appropriate decisions for the future.

IV. Possible applications of the method

The above analysis can be applied to improve the techniques in
portfolio selection and risk management. This analysis can also be
related and applied to the pricing of derivative securities. An extensive
empirical literature has documented the presence of anomalies in the
Black-Scholes (1973) model, (hereafter B-S) and in the term structure
of these anomalies. This is the case for the behavior of the volatility
smile or the unconditional returns at different maturities. Theoretical
efforts have focused mainly on two extensions of the Black-Scholes
model by introducing jumps into the return process and allowing for a
stochastic volatility.

Attempts in the finance literature at reconciling the theory  with the
data have mostly centered around two classes of models: jump-diffusion
models and stochastic volatility models. This is because these models
lead to returns distributions that exhibit both skewness and kurtosis.
Hence, each class of models could be made consistent with observed
degrees of deviation from the Black-Scholes model. The theoretical
predictions of either class of models do not seem to be consistent with
the observed term structures of these deviations. Empirical tests of
Black-Scholes type models reveal several empirical biases mainly
because of the distribution of the underlying asset prices that seems to
be with fat tails, high peaks, non symmetric, etc.

Das and Sundaram (1999) employ commonly used versions of these
two classes of models and find that these models exhibit some term
structure patterns  that are fundamentally inconsistent with those
observed in the data.  They conclude that neither class of models
represents an adequate explanation of the empirical evidence. Our work
provides an alternative approach to handle these problems.3

Since the empirical distributions of the underlying assets are rather
skewed and asymmetric, the use of a mixture of distributions allows to
approximate the empirical distribution. If the observed distribution is



Multinational Finance Journal120

4. For further evidence on the biases in the Black and Scholes (1973) model, the reader

can refer to Dumas, Fleming and Whaley (1998).

used then the biases in B-S would disappear.
Consider an out of the money call. If the underlying asset price rises

sufficiently, then its value will be higher. It is as if the value of the out
of the money call is a function of the right hand tail of distribution. The
B-S model has a tendency to misprice out of the money calls.

Consider an out of the money put. If the underlying asset price falls
sufficiently, then its value will be higher. It is as if the value of the put
is a function of the left hand tail of the distribution. The fatter is the tail,
the higher is the put price. The Black-Scholes model has a tendency to
misprice out of the money puts.4

Since the put-call parity is independent of the models used for option
pricing, it can be used to determine the biases for in the money options.
When the call is out of the money, the put is in the money and vice-
versa. Hence, an out of the money call should exhibit the same bias as
an in the money put and vice versa. However, a more rigorous
derivation of an option pricing model is possible in the lines of Black-
Scholes.

Using the martingale approach, the study of Rachev and
Ruschendorf (1995) reveals that one of the most important feature of
their model is that in most cases the prices of options can be explicitly
calculated. So it relatively easy to analyze the sensibilities of the
derivatives in this context. Moreover, many distributions for the laws of
the stock returns can be obtained in the limit. In particular, this result
gives  a  valuation like in the Black and Scholes (1973) model but with
an  underlying asset price that can have fat tails, higher peaks in the
center, non symmetric shape, etc.  The price process (St) verifies the
following dynamics:

St = S0 exp[(: – ½ F2) tY + F dBt]. 

So, the underlying asset price change movements follow the  stochastic
differential equation:

(11)
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where (Bt)t is a standard Brownian option and Y is a random positive
variable independent of  (Bt)t with the following distribution:

P[Y = yj] = 2j, j 0 1, 2 , 3.

Let us denote by:
aj = "yj, and F j

2 = F2yj,

" = : – ½F2,

Xt = "t + FBt.

If the times of prices changes were deterministic then  The

logarithmic of price changes denoted by Zt is described by the stochastic
differential equation:

(12)

Within the  general framework developed by Harrison and Kreps

(1979), the risk neutral valuation under the minimal martingale measure 

is given by its final payoff discounted to the present at the riskless
interest rate:

(13)

where the mathematical expectation  is taken with respect to the

risk-neutral probability .

The density  of the minimal martingale measure is given by:

,

where r refers to the riskless interest rate. One  can also give another
form for the evaluation formula  which is the integral of the "classical"
formula of the model of Black and Scholes (1973)  with a drift  :yj and
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5. For the call, C0(K) = S0M(a, n, p) – K(1 + r)–n  M(a, n, p') in discrete time and in

continuous time: C0(K) = S0M(–d1) – Ke–rt M(–d2) where:

,

and 

.

6. The observed kurtosis in the distribution of stock price changes may be caused by

the fact that returns follow a finite mixture of normal distributions. From the theorem 4.1 of

a volatility  under the law of Y, that is:

(14)

For the case of standard options, it can be also noted that like in the
Black and Scholes model, one has an option formula of the following
form for the call:5

,

where

 

and  is a Brownian motion under , K is the strike price and M

is the cumulative inverse function of the normal distribution.
For the put, we have:

where N is the cumulative function of the normal distribution.6
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Rachev-Ruschendorf (1995), one deduces that the distribution of Zt, Z1,t, Z2,t are  mixtures of

normal distributions, i.e. the characteristic function  Nzt(u) = E[eiuZt] has the form:

So it is given by:

Its density function is given by:

The main difference between the option pricing model derived from
the mixture-distribution and the standard Black-Scholes is that it can be
more easily calibrated to the market. In fact, this model corresponds to
a sum of Black-Scholes prices weighted by specific coefficients and
shows more "degrees of freedom" than the standard Black-Scholes
model. This has the potential to explain market prices because of the
number of parameters used in the calibration which correspond to more
degrees of freedom.

On the one hand, this model can appear as a special case of the
models in Rachev-Ruschendorf (1995). While these authors do not
provide a way to estimate the  weighting coefficients in an explicit way,
our approach offers a method to estimate these coefficients. This can be
done using the EM algorithm.

Besides, in their paper, Rachev-Ruscendorf (1995) provide option
pricing models in the presence of two randomizations: a randomization
of the number of price changes and a randomization of the ups and
downs in the price process. However, they do not provide statistical
"tools" that allow the detection of the abrupt changes in market prices.
Our segmentation method can be applied to their analysis to facilitate
the empirical tests of their models.

While Ritchy (1990) and Rachev and Ruschendorf (1995)  do not
provide a way to estimate the weighting coefficients in an explicit way,
our approaches offer complementary methods to estimate these
coefficients from market data. This can be done using the EM algorithm
or the segmentation method allowing their models to be used in real
time by market participants. In fact, their models can be calibrated to
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market data using our methods. We plan to test the class of models in
Rachev and Ruschendorf (1995) and in Bellalah and Prigent (2002)
using the above technology.

V. Conclusion

Several biases are reported in the empirical tests of capital asset pricing
models and option pricing models, most of which are based on the
simplifying assumptions regarding the distributions of financial asset
prices. The normal assumptions are commonly used in the derivation of
capital asset pricing models and option models. This is also the case for
most standard risk management "tools". In fact, the methods proposed
in risk management by RiskMetrics and CreditMetrics (among others)
are also subject to several critics regarding the underlying distributions
of financial assets.

Since the empirical distributions contain all the available
information in capital markets, and represent a good description of the
complexity of financial systems, numerous studies suggest the use of the
observed distributions rather than the complex theoretical distributions
when pricing financial securities. In this spirit, several authors studied
the distributions of financial assets returns using two methods: the first
is based on the stochastic processes and the second  on the empirical
observations. The study of the empirical distributions is a subject which
is highly relevant for financial research. Also, the detection and
estimation of the features of nonstationarities in data sequences are
critical points in conducting credible research that uses data for
inference.

In this vein, this paper applies and presents some results regarding
the characterization of data with parameterized and nonparametrized
forms and the determination of the stability of distributions. It discusses
the approaches that have been previously used in the study of financial
data and proposes a "new" segmentation method for the detection of
changes.

Since market participants feel that prices are likely to be drawn from
a multimodal distribution corresponding to different events in the
market place, these events are expected to generate the shape of the
mixing distributions of returns. Several financial explanations are given
for the  observed shapes of empirical distributions  of assets returns.

Using the assumption of a mixing distributions as in Melick and
Thomas (1997) and Lekkos (1999), we propose a simple decomposition
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of empirical distributions as a mixture of some normal distributions.
Two alternative  methods are used. The first method is a nonparametric
approach based on a kernel estimate. The second is a parametric
estimation based on the maximum likelihood criteria and the
Expectation Maximization algorithm. The two methods are applied to
the CAC 40 index data at the Paris Bourse. Both approaches give the
same results and support the decomposition whether we use inter day or
intraday data. We find that a mix of two or three distributions give an
exact fit to the observed data. We extend our analysis by using a
segmentation method. An algorithm of detection is developed to detect
changes in the parameters of the distributions. The method allows to
detect systematically sudden changes and locates their position. The
form of abrupt changes in the distribution are estimated by minimizing
a contrast function.

In the application of our segmentation method to the CAC 40 index
and stocks traded in the Paris Bourse, we detect three regimes in the
market place corresponding to different variances. Since this
segmentation methodology supports the findings of the parametric and
non-parametric approaches, we can assert that the observed distribution
is generated from three mixing distributions.

Our work based on the EM algorithm and the segmentation method
gives similar results and confirm the mixing distributions. It can be used
in several contexts in the study of different distributions of returns
observed in financial markets.

In a different context, Melick and Thomas (1997) use a different
methodology to obtain a three mixing distributions in commodity
markets (for oil). However, they do not confirm their results by applying
our segmentation method. Besides, they do not examine the detection
of changes and their exact locations. The segmentation methodology
proposed here is new and can be applied to other data sets or other data
generating conditions in other financial markets. Our results have some
pricing implications.

First, since our parametric and non-parametric approaches allow the
characterization of the observed distributions of returns, these mixing
distributions with their appropriate weights can be used as inputs in the
computation of VaR models using the observed distributions rather than
the standard normal assumptions.

Second,  the EM method proposed here is useful in handling the
problems of missing data and in the identification of the exact fit to the
empirical distributions.
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Third, since our segmentation method allows to detect the abrupt
changes and their exact location, this latter feature can be used in real
time with intraday data to provide some useful information for the
reallocation of portfolios by individuals and institutions. Fourth, we
provide an option pricing model that can be used for the valuation of
standard and exotic derivatives.

Our work provides an alternative to the existing models. We plan to
apply our results using intraday data in options markets and their
underlying assets markets.

Appendix: Theoretical results regarding the penalized minimum
contrast estimator

We present in this section some of our theoretical results concerning the

penalized minimum contrast estimator proposed in section 4 for estimating the

change-point instants. 

Let (X1,..., Xn) be the vector of observations. In order to obtain some

asymptotical results concerning the penalized minimum contrast estimator

proposed in section 4 for estimating the change-point instants, we must assume

that the length of the segments increase when n goes to infinity. More precisely,

denoting  the true unknown vector of change-point instants,

we shall assume that:

H0
1: There exists J* = (J1

*, J2
*,..., ) with 0< J1

* < J2
* <…, <1, such

that, for any 1 # R # L – 1,  when n 6 4.

Hypothesis H0
1 means that all the segment's lengths increase with the same rate

n. We shall consider also the following hypothesizes:

H0
2: For any 1 # R # L – 1, 2 R

* = (: R
*, F*

R
2) belongs to a  compact set 1

of ú × ú+.

H0
3: Let gi = X i – EX i and .i = (X i – EX i)² –  VarX i. Then, there exist

C1 > 0, C2 > 0 and 1# N < 2, such that, for any t $ 0 and  any m

> 0,

(15)

Hypothesis H0
3 is satisfied for a very wide class of random processes, such

as weakly or strongly dependent processes. For example, H0
3 holds with N = 1

if, between two changes, (X i) is an ARM A process. If, between two changes,
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7. Fore more details, see Lavielle (1996).

(X i) is a strongly dependent stationary Gaussian process, then, there exists 0 #
a < 1 such that EX0Xk = O(k–a), �k # 0, and H0

3 holds with N = max(2–a,1).7 For

any L > 0, let Cn,L = {(c1, c2, ... , cL–1) 0 ùL–1, 0 < c1 < c2 < ... < cL–1< n}. and 1L

= 1L. When the number L of segments is known, we have the following result:

Theorem A.1

 
Let  be the estimate of (c*, 2*) defined as the solution of the following

minimization problem:

 for all (16)

where

(17)

Then, under (H0
1, H0

2, H0
3), for any 1 # R # L–1,  converges in

probability to (J R
*, 2 R

*) when n 6 4. More precisely:

 

and

When the true number L* of segments is unknown, we assume that an upper

bound  of L* is known. Then, we have the following result:

Theorem A.2

Let {$n} be a positive sequence of real numbers such that:

and (18)

Let  be the estimate of (c*, 2*, L*) defined as the solution of the

following minimization problem:
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(19)

where

(20)

Then, under (H0
1, H0

2, H0
3), , converges in probability to (  ).
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