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We analyzed six stock exchange markets through the nonlinear dynamics

concept. We used daily data from the Toronto Stock Exchange, NYSE, London

Stock Exchange, Hong Kong Stock Market, Tokyo Stock Exchange, and the

Singapore Stock Exchange. The period studied is from January 1, 1988 to June

30, 1999. We performed Local Principal Components Analysis in order to

estimate the dimension of each underlying attractor. Our main interest is the

noise level estimation of each time series. The results indicate weak

determinism and strong noise influence. The noise-to-signal ratio for almost all

time series is above 50% . Noise is leptokurtic in the eastern stock markets, and

mesokurtic in western ones. (JEL C22, G15).
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estimation, nonlinear dynamics.

I. Introduction

In recent years, the development on nonlinear science has had a great
influence in the analysis of the financial time series. Under this
influence, many financial economists and researchers treated the
financial markets as nonlinear dynamical systems with important
implications in the Efficient Market Hypothesis (EMH), capital market
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1. The existence of transaction costs influence investors by reacting to arrival of news

with delay, until verification of news is available. Furthermore, there is by nature, a difference

in the attitude of investors towards positive and negative news. This is quite close to the

theory stating that investors are loss averse rather than risk averse. Hence, the negative news

tends to be overvalued relative to the good news.

2. According to the theory advanced by Heiner (1983), market participants differ in

their ability in making the correct buy and sell decisions under uncertainty. Kaen and

Rosenman (1986) showed that the spread between the noise traders and the experienced

traders in conjunction with the complexity of the information, results in price changes in the

same direction and price change behavior appears to be in non-periodic cycles.

3. The rejection of the hypothesis that stock returns are IID does not contradict market

efficiency, and does not provide evidence of chaos in the stock market under study. However,

the rejection of IID is consistent with the view that stock market returns are generated by

nonlinear stochastic systems. It is also consistent with the presence of low complexity chaotic

behavior in stock returns (see Hsieh [1991]).

integration, and modern financial risk management. 
Observed nonlinear behavior may be due to a number of reasons: the

microstructure character of the market itself, the “herding behavior” of
the investors, the regulatory framework involved, the low frequency of
information input in the market relative to the observed prices, the
market anomalies, and the existence of transaction cost.1 In addition, not
all the participants in the market are equal in their ability to process
information (see Heiner [1983], Kaen and Rosenman [1986]).2 

While several researchers have reported evidence of non-IID
behavior and nonlinear dependence in financial time series (i.e.
Abhyankar, Copeland, and Wong [1995], Cecen and Erkal [1996],
Hsieh [1989], Scheinkman and LeBaron [1989]), utilizing several
statistical tests, few of them argue that a market is a strictly
deterministic dynamical system (i.e. Blank [1991], Mayfield and Mizrah
[1992]).3 In other words, they do not provide us any information about
the stochastic part of the time series and its characteristics. In this study
we assume that financial markets behave as stochastic dynamical
systems with elements of both deterministic and stochastic behavior.

The dynamical models can be represented by differential
(continuous) or difference (discrete) equations. Difference equations
allow for a greater variety of approaches to be used to model the
mapping from past values to the present one, parametric, neural
networks, non-parametric, and local linear models (see Timmer [1998]).
For all these methods a significant amount of observational noise can be
a severe problem. Especially for difference equations the functional
relation between past and present values will be underestimated if
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observational noise is not included in the model, and the degree of
underestimation depends on the signal-to-noise ratio. However, stock
price movements are discrete: there are lower bounds on the minimum
observed nonzero price movement and indivisibilities in the observed
price series (Shaffer [1991]). Furthermore, the econometric methods
about the discrete time approach are far more developed than their
continuous time counterparts.

The most common way used to investigate whether a time series is
chaotic, involves the so-called “correlation dimension” technique
originally introduced by Grassberger and Procaccia (1983). In short, if
the correlation dimension saturates to a positive finite value, the time
series is considered chaotic (some exceptions occur if the time series
has strong serial linear correlations). In many cases of chaotic attractors,
the correlation dimension does not saturate due to the presence of noise
and has an upward trend, thus suggesting purely stochastic behavior (i.e.
DeCoster et al. [1992], Eldridge, Bernhardt, and Mulvey [1993], Frank
and Stengos [1989], Willey [1992]).

However, the influences derived by the direct application of
nonlinear methods in finance and economics are affected by a number
of problems. As noted by Hsieh (1992), Guillaume (1995), and Ramsey
et. al. (1990), relatively short data sets make the significance of the
results ambigous. Also, following Szpiro (1997), Guillaume (1995),
Savit (1988), and Casdagli and Eubank (1992), price fluctuations are
dominated by noise, and one important goal of the analyst is then to
understand the precise nature of the noise. Many economic forces act
similar to stochastic shocks. This means that economic and financial
processes are “contaminated” with random noise which makes the task
of discriminating (if present) intrinsic chaos much more difficult. In
practice, the existence of noise is the cause of the difficulty in
distinguishing between the deterministic and stochastic processes
(Mirowski [1990]). Therefore, the detection of noise can lead us to a
better understanding of the true financial time series dynamics, let us
model these time series in a better way, and finally improve the
forecasting. Savit (1988) also notes: "using the ideas and the framework
introduced (i.e. nonlinear dynamics), it should be possible to improve
price predictability and to find general patterns in price movements that
heretofore have been largely regarded as random". Thus, it is very
important to estimate the noise in financial time series, as a first step to
a better understanding of the financial time series under the nonlinear
dynamics concept. In this study we will discuss a methodology for
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4. Baumol and Benhabib (1989) give a good survey of economic models, which produce

chaotic behavior. See also Baumol and Quandt (1985).

separating noise from chaotic processes.
The rest of the study is structured as follows: Section 2 addresses the

recent literature on the subject and the motivation of this study. In
section 3 we describe our data sets. Section 4 introduces the reader to
the methodology used, with the main results presented in section 5.
Finally, section 6 concludes.

II. Recent Literature and Motivation

There is a growing body of literature applying the concepts of nonlinear
dynamics and chaos theory to the field of economics and finance.4  Savit
(1988,1989) provides an analytical framework for applications of chaos
to asset prices and in particular to options prices, while Hsieh (1991)
discusses other methological issues in detecting chaotic and nonlinear
behavior in stock market returns. 

Brock and Sayers (1988) found nonlinearity in the U.S. labor market
and investment. Barnett and Chen (1988) discovered low dimensionality
in some U.S. monetary measures, while Frank et.al (1988) indicated
nonlinearities in Japan’s real GDP. Scheinkman and LeBaron (1989),
Ashley and Patterson (1989) also report evidence of nonlinearities and
chaotic behavior testing CRSP data. In addition, De Grauwe et.al.
(1995), Hsieh (1989) applying similar techniques found strong nonlinear
dependencies in a number of foreign exchange rate returns, albeit weak
chaotic behavior.

Although the existence of nonlinear dependencies and chaotic
behavior is well documented in financial time series, the presence of
noise weakens the forecasting ability of the applied models. Jaditz and
Sayers (1995) found that chaotic predictions were not significantly
better than AR(p) predictions, while in the case of Diebold and Nason
(1992) random walk predictions were comparable with chaotic
predictions. Thus, there is empirical evidence that noise has a strong
influence on financial time series. On these grounds Guillaume (1995)
utilized other techniques for noise reduction and reported the absence
of low-dimensional attractor for the foreign exchange markets. Szpiro
(1997) in studying the S&P 500 Index calculated the correlation integral
by the method of hyperspheres, and found an increasingly presence of
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noise. 
The most common way to estimate the noise level of a financial time

series is the residuals’ norm of some stochastic model. A common
choice is the GARCH model, which has the advantage of dealing with
heteroskedasticity. However, there are two serious disadvantages of this
choice. The first one has to do with the simplicity of dynamics of that
model, considering the complexity of the financial time series behavior.
There are many references that indicate nonlinear structure on financial
time series, which cannot be extracted with a GARCH model (Yang and
Brorsen [1993]). The second one has to do with the noise amplification
through the dynamics of the model. 

The solution to the above problems comes from the nonlinear
dynamics concept. First, we are able to use complicated models, such
as the local linear models. These models consider that every cluster (or
neighborhood) of points is a special case because it has its own
dynamics (approximated linearly). Second, we do not utilize the
dynamics of each neighborhood in order to estimate the noise level.
Therefore, we do not amplify the noise through our model’s dynamics.
We can estimate noise geometrically, i.e. by measuring the deviation of
each neighborhood from smoothness. A noise-free time series is
considered as the result of a system whose successive values are lying
on a smooth hypersurface. Therefore, any deviation from this
smoothness is considered noise.

This study extends the previous literature applying a new concept on
estimation of the standard deviation of the noise. The aim is to utilize
modern nonlinear techniques in order to conclude about the influence
of noise, its characteristics, and its impact on the statistical properties
of the financial time series. In particular, the presence of noise is
explicitly taken into account and the methodology is applied to a large
data set constisting of six international stock exchanges. 

The methodological approach used follows five steps. In the first
step, we apply the BDS statistic to test for independence, and the
Variance Ratio statistic to test for a random walk. In the second step we
determine the upper bound of the dimension of each time series with the
Local Principal Component Analysis. We use this upper bound in a
third step to estimate the correlation integrals from each time series, and
in the next step we calculate the standard deviation of noise from their
distortions. Finally, in the fifth step, we calculate the noise to signal
ratio. The results indicate the presence of random noise in all six stock
exchanges, supporting the market efficiency hypothesis. They also
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5. It is true that the winsoring scheme used is arbitrary and rather simplistic. However,

the observations winsorized were few and mostly occurred on very active days. Moreover,

other informal data winsoring schemes were used (based on thresholds or z-scores) and the

results were found to be relatively insensitive.

6. Brock, Hsieh, and LeBaron (1991) report extensive simulations and show that the

asymptotic distribution is a good approximation of the finite sample distribution when there

are more than 500 observations.

indicate that short-term prediction is equally hard for all the markets
under study.

III. Data Description and Preliminary Diagnostics

The daily log returns of six international stock markets are analyzed.
These markets examined are the Canadian (TSE 300 Composite), the
US (S&P 500), the UK (FTSE 100), the Hong Kong (Hang Seng), the
Japanese (Nikkei 225) and the Singaporean (Straits Times). The first
three markets are western and the last three are eastern. The period
under study is from 1/1/1988 to 30/6/1999. That means we have eleven
and a half years of daily data or 2900 observations for each data set.

The outliers for each data set were deleted bounding the time series
from the western markets to ±2%, and the time series from the eastern
markets to ±4%.5 The descriptive statistics for each data set are given
in table 1, Panel A.

The aim of the BDS test is to distinguish between IID data and any
kind of dependence. This test is chosen because it can detect many types
of departures from independence and identical distribution, and can
serves as a general model specification test, especially in the presence
of nonlinear dynamics. 

The BDS statistic is asymptotically distributed as N(0,1) under the
null hypothesis of IID data, providing that the number of observations
tends to infinity.6 It utilizes the correlation integral Cm(r, T) defined in
equation 6, which has to be calculated for various embedding
dimensions (m). Let's define the C1(r, T) correlation integral for m = 1.
Brock, Dechert, and Scheinkman (1987) propose the BDS statistic:

,       (1)
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7. The calculation ot the standard deviation is given by:

, 

where  and ,

.

See also Willey (1992)

8. Note that Cm(r, T) = C1(r, T)m does not imply IID. BDS (1987) have shown that tests

based on the W statistic have a higher power for tests of stochastic or chaotic independence

than other statistical techniques. Hsieh (1991) shows that BDS has a good power to detect at

least four types of non-IID behavior: linear dependence, nonstationarity, chaos, and nonlinear

where T is the total points on the phase space, t64, and Nm(r, T) 7 is an
estimator of the asymptotic standard deviation of the  Cm(r, T)–C1(r, T)m.
If {xt}were IID, then Cm(r, T) = Cm(r, T)m (null hypothesis).8

TABLE 1. Sample Characteristics

CAN USA UK HK JAP SIG

Panel A: Descriptive Statistics

No of Obs. 2902 2905 2905 2869 2866 2857
Average .0004 .0007 .0005 .0008 –.0001 .0004
St. Dev. .0063 .0080 .0082 .0144 .0133 .0115
Skewness –.2657 –.0696 –.0584 –.1065 .0194 .0247
Kurtosis 1.2774 .3866 –.0398 1.7066 1.1959 2.4082
Maximum .0200 .0200 .0200 .0400 .0400 .0400
Minimum –.0200 –.0200 –.0200 –.0400 –.0400 –.0400

Panel B: BDS test results

2 13.18* 5.43* 3.99* 12.42* 14.43* 18.28*
3 14.97* 7.37* 6.63* 15.65* 18.68* 21.65*
4 16.01* 8.72* 8.42* 18.65* 21.95* 23.73*
5 17.03* 11.05* 9.71* 21.37* 26.44* 25.78*

Note: Panel A presents the descriptive statistics for each data set. Kurtosis coefficient

is centered on zero. Panel B presents the BDS test results for each data set using r equal to

one standard deviation of the corresponding time series. For all countries and the period under

study these results are significantly different from 0. The hypothesis of IDD data can be

rejected with a large probability. The asterisk (*) means that the estimated result is

significantly different from 0 at 5% level. 
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stochastic processes.

9. This result does not contradict market efficiency. Market efficiency implies that

forecast errors of returns are not predictable. The fact that returns themselves are not IID (and

therefore potentially predictable) says nothing about the predictability of forecast errors. The

rejection of IID is consistent with the view that stock returns are non-stationary, and also

consistent with the presence of low complexity chaotic behavior in stock returns (Hsieh

[1991]). 

10. According to our results, Canada and Singapore do not follow the random walk with

large probability. On the other hand, Japan and Hong-Kong are are consistent with the

random walk hypothesis. Finally, for the U.K. and U.S.A. we obtained mixed results. 

The BDS statistic for each data set is given in table 1, Panel B. The
critical value for the test is 1.96, with a 5 percent level of significance.
The results indicate significant dependence in all embedding
dimensions. The results strongly reject the null hypothesis that stock
returns are IID, since the values of the BDS statistic is much greater
than   in all cases.9 The large values for the BDS statistic in all

cases but USA and UK, indicate strong evidence for nonlinearity in the
data.

The Variance Ratio Test (Lo and MacKinley [1989]) was designed
to recognize the random walk (null hypothesis) from any other process
(alternative hypothesis). It can give us supplementary information about
our time series. Under the random walk hypothesis, the variance of the
q-differenced series {pt–pt–q} is q times the variance of the first
differenced series {pt–pt–q}, where pi is the logarithm of the raw (price)
time series. The variance ratio test is calculated for different values of
q for the six stock exchanges. For most countries the hypothesis of
random walk is under question. The variance ratios generally increase
with q implying positive serial correlation for multiperiod returns. For
USA and UK the variance ratios generally decline implying negative
serial correlations for multiperiod returns.10 

IV. Local Analysis

In order to reconstruct the phase space of a dynamical system, given a

time series ,we first have to choose an embedding dimension and

a time delay (J). Then we construct the vectors xi = (xi, xi+J,..., xi+(m–1)J),
for i=1,2,...,T, where T = N – (m – 1)J. 
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11. The diagrams are available upon request from the authors.

A common criterion for the choice of J is to take time delay equal
to the time when the first minimum of mutual average information
occurs (Fraser and Swinney [1986]). According to this criterion we
calculate the mutual information of the data set before and after the time
delay, and we choose the value of J that first minimizes the mutual
information. In our cases this first minimum can be relaxed since the
value of mutual information drops sharply and saturates to a very small
value for J = 1 and beyond. So for all our data sets the mutual average
information criterion indicated J = 1.11 This choice of J is also the usual
choice found in the literature for the financial time series.

If d is the dimension of the attractor, we need m $ 2[d] + 1 to
reconstruct the attractor successfully, where [d] indicates the smallest
integer larger than or equal to d (Takens [1981]). The above condition
was relaxed by Sauer, Yorke, and Casdagli (1991) to m > 2d.

The Local Principal Components Analysis (LPCA) (Broomhead,
Jones, and King [1987]) can provide us by a rough estimation of d even
if large amount of noise distorts the phase space. The methodology of
LPCA is the following.

The neighborhood of xi, Ui,r, is defined by the points xj whose
distance from xi is less than or equal to r.

We define the neighborhood matrix Ai to be: 

,      (2)

where |Ui,r| is the total points contained in the neighborhood Ui,r.
The elements of Ai define an ellipsoid in m-dimensional phase space.

The D principal components (semi-axes) (where D=[d]) of this
ellipsoid, which scale linearly with r, are the signal space, while the rest
m-D ones are the noise space. The curvature of the neighborhood is
most contained in the noise space. The semi-axes of the ellipsoid are
calculated via Singular Value Decomposition (SVD) algorithm (Press
et al., [1996]).

More precisely, the SVD algorithm makes the decomposition A =
GCGCVT where G is an orthonormal matrix |U| × m that contains the first
m eigenvectors of ACAT; E is a diagonal matrix m × m with the
eigenvalues of ATA (also known as singular values of A), and V is also
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12. We can only recognize noise with constant variance, although the effect of

heteroskedasticity is present to all of our time series. Filtering (even linear filtering) must be

avoided (Badii et al. [1988], Broomhead, Huke, and Muldoon [1992] , Theiler and Eubank

[1993] because it increases the complexity of the time series and in some cases it can alter

significantly its essential characteristics. In addition, noise is assumed to be Gaussian and

additive (the non-Gaussian noise and its estimation problems is discussed in Timmer (1998).

13. Theiler (1986) corrected the correlation integral (see equation  6) for highly

correlated data. According to his correction when the data are highly correlated (i.e. first

autocorrelation above 0.9) we must ignore the neighboring in time values, because they will

add some bias to the correlation integral. In our cases the first autocorrelation is relatively

small, therefore there is no need to adopt this criterion. For the case of Canada is 0.215, for

USA 0.034, for UK 0.077, for Hong Kong 0.079, for Japan –0.001, and for Singapore is

0.187.

an orthonormal matrix m´m with the eigenvectors of ATA.
We are interested in the singular values of Ai (F1,i $ F2,i $...$ Fm ,i),

which are the lengths of the neighborhood ellipsoid semi-axes. Finally,
we average the m singular values of each neighborhood over all
neighborhoods:

Fh = +Fh,i,, for h=1,2,...,m,       (3)

and plot log Fh versus log r.
The next and most important step of our analysis is the noise

estimation. We will apply Schreiber's method (1993) as it was proposed
for the noise estimation of chaotic time series. Our assumptions about
noise are: (a) random uncorrelated fluctuations, (b) zero mean and
constant variance, (c) with no other effect on the dynamics of the time
series, (d) and a Gaussian-like symmetric distribution.12 The correlation
integral (see Grassberger and Procaccia [1983]) denotes the fraction of
the pairs of points that are included in a hypercube of size 2r.13

,       (4)

where |x| is the maximum norm

H(x) = 1 if x $ 0
H(x) = 0 if x < 0

The derivative of log Cm(r, T) with respect to log r, for small I,
denotes the correlation dimension :
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14. For a theoretical background on this concept see Sauer, Yorke, and Casdagli (1991)

and for an experimental application see Ding et al. (1993).

 .       (5)

Small fluctuations of d are expected due to the presence of noise;
therefore, d becomes d(r). When m $ d one expects d(r) .d .14

Let k be another value for the embedding dimension with k > m.
Schreiber (1993) proved that:

,       (6)

where   

,

erf(x) is the error function
 s  is the standard deviation of noise
dk(r) and dm(r) are correlation dimensions corresponding to k and

m embedding dimension respectively

For simplicity, we define dk,m(r) as  the left-hand side of equation 6.
The value of s must ensure the equality of equation 6. Using Brent
minimization (see Press et al. [1996]) we can fit the theoretical model
of the right-hand side of equation 7 to the experimental results of dk,m(r)
and compute the error. s is determined as:

,       (7)

where s is a positive real value.
This method for noise estimation has the advantage that dk,m(r)

reveals the noise distribution, which in many cases is not strictly
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normal.
Finally, it is easy to estimate the Noise-to-Signal Ratio (NSR). This

ratio is defined as follows:

      (8)

where S is the standard deviation of the noise-free time series, and  is

the standard deviation of the noisy time series. Since we do not know

the exact value of S to estimate the NSR, we use  instead. 

V. Empirical Analysis and Discussion of the Results

LPCA is used for the dimension calculation and Schreiber’s method for
the noise standard deviation calculation. 

We start with LPCA in m = 5 dimensions (figure 1). Guillaume
(1995) applied the global SVD method and used a very large value for
m = 50. In this study we use the local SVD method and we set a
sufficient embedding dimension (m = 5), which is consistent with the
dimension that characterizes the low-dimension chaos. 

All of our data sets seem to be one-dimensional because there is only
one significantly large singular value that scales linearly with r. The
remaining four singular values have approximately the same behavior.
This is an evidence of determinism in each time series. However, the 
determinism seems to be weak for each index due to relatively large
amount of noise. Recalling the results of BDS statistic and the variance
ratio test statistic, we conclude in favor of a deviation from IID, and in
rejecting the random walk, respectively.

In figure 2, we have the noise estimation results by the application
of equation 7 with embedding dimension k = 3, 4, 5 and embedding
dimension m = 2 (see equation 6). The radious r is taken as a function
of the range between the minimum and the maximum returns of each
series (see table 1). As it is expected, there is an inverse relation
between the estimated noise level and the calculated BDS statistic. Then
we calculate the NSR’s for the six different series (see equation 8).
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FIGURE 1.—LPCA for the six indices. W e set m  = 5. The common

characteristic of all these graphs is that only log(F1) scales linearly with log r.

Thus, we conclude that all time series are of dimension at most 1.
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FIGURE 2.—Noise estimation for the six indices. The bold line indicates the

curve we would observe if the noise were  normal with mean 0 and the estimated

standard deviation.  (a) Canadian index. Estimated s=0.0050, NSR.62.6%. (b)

US index. Estimated s=0.0067, NSR.71.6% . (c) UK index. Estimated

s=0.0075, NSR.85.2%. (d) Hong Kong index. Estimated s=0.0106,

NSR.53.5%. (e) Japanese index. Estimated s=0.0095, NSR.50.9%. (f)

Singaporean index. Estimated s=0.0076, NSR.44.3%.
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15. Szpiro (1997) followed the local analysis (with hyper-spheres when calculating the

correlation integral) and used different values for the embedding dimension m up to 25, until

he observed saturation on the noise level estimation.

In this study, we use local analysis (with hyper-cubes when calculating
the correlation integral), and we observe the saturation on the noise
level estimation for embedding dimension up to 5.15 From figure 2 we
observe that the deviation of the estimated noise from the normal noise
is larger in the eastern markets than it is in the western markets.

This paper arrived at two main sets of conclusions for the markets
under study. Firstly, with respect to the magnitude of the noise, the
western markets appear to function more efficiently than the eastern
ones since the noise component appears to be proportionally much
larger in the former case than in the latter. More precisely, noise to
signal ratios (NSRs) were estimated at around 70% for the western
markets as opposed to around 50% for the eastern ones. The results are
of no surprise since the western markets are more mature and less
volatile compared to the eastern ones that are, to a larger extent,
influenced by speculators, foreign institutional investors and continuous
regulatory changes. 

Secondly, with respect to the distribution of noise, the western
markets, which are considered relatively more mature and efficient,
share similar characteristics with noise being distributed in a mesokurtic
manner. Canadian and USA markets behave similarly in terms of the
characteristics of their noise distributions while for the UK market, the
high NSR nearly disables the short-term profit.

Eastern markets also have similar characteristics between them, with
large noise components, which are distributed leptokurtically. In
general, it can be expected that the negative or positive effects of
random news and events may often be enlarged multiplicatively in such
markets and this may explain the leptokurtic distribution of noise (for
a relevant discussion, see, for example, Yang and Brorsen [1993]).
Moreover, the leptokurtic distribution of noise in the eastern markets
limits short-term predictability even though their NSRs are much lower.

VI. Conclusions

Six international western and eastern markets (both mature and
emerging ones) were considered under the nonlinear dynamics concept,
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16. It is generally accepted that the financial time series are characterized by

heteroskedasticity. However, the existing methods (like Schreiber's for noise estimation) are

still not corrected for this feature. Therefore, we can only get some rough estimation for the

above quantities. In addition, the log operation we used to calculate returns, eliminates

heteroskedasticity (Fialho and Pedreira ([1996]).

over the period January 1, 1988 to June 30, 1999. For these markets
strong evidence was found that they are not IID. This is consistent with
the existing literature of other financial applications. 

We applied Schreiber's method for noise estimation in time series16,
since there is evidence of underlying chaotic behavior on all markets
under study. We focused on the features of the stochastic part (noise) of
the markets under study. Since after noise reduction we can have a
better view of the time series dynamics and a smaller prediction error.
Each of the markets under study consist of a one-dimensional
deterministic process plus a large amount of noise. Both BDS statistic
and LPCA method indicate that our markets are not consistent with the
random walk hypothesis; at least for the period we study.

The western (mature) markets have NSRs of about 70% and
mesokurtic noise distributions, while the eastern markets have NSRs of
about 50% and leptokurtic noise distributions. We also see that the BDS
statistic results are relatively large for the markets with low NSRs and
relatively small for those with high NSRs. The interaction between the
Canadian and US market is reflected by the distribution of noise: in both
markets, the noise distribution is almost the same. 

The noise standard deviation is a measure of risk, so that one can
substitute the numerator of the volatility coefficient, which is the
standard deviation of the time series, with the estimated noise standard
deviation. Even an irregular time series derived by a low dimensional
chaotic system, in the absence of noise, is considered to have no risk at
all because it is completely predictable in the short run.

The noise estimation method we presented in this paper is an
essentially geometric method. That is, it takes into account only the
distortion of the reconstructed attractor. Evaluating the noise standard
deviation, we still have no information about the noise amplification
through the time evolution. An alternative substitution of the numerator
of the volatility coefficient could be the noise amplification. This can be
a matter for future research.

Additionally, another matter for future investigation could be the
estimation of the kurtosis coefficient via our nonlinear noise estimation
method. Finally, one can study both nonlinear methods presented and
draw a link between the local curvature as estimated by LPCA and its
effect on the noise estimation method.



61Nonlinear Dynamics

References

Ashley, R.J., and Patterson, D. M. 1989. Linear versus nonlinear

macroeconomics: A statistical test, International Economic Review 30 (3):

685-704.

Abhyankar, A.; Copeland, L. S.; and Wong, W . 1995. Nonlinear dynamics in

real time equity market indices: Evidence from the United Kingdom, The

Economic Journal 105: 864-880.

Badii, R.; Broggi, B.; Derigetti, B.; Ravani, M.; Ciliberto, S.; Politi, A.; and

Rubio, M. A. 1988. D imension increase in filtered chaotic signals, Physical

Review Letters 60: 979-982.

Baumol, W.J, and Benhabib, J. 1989. Chaos: Significance, mechanism, and

economic applications, Journal of Economic Perspectives 3: 77-105.

Baumol, W.J., and Quandt, R. E. 1985. Chaos, models and their implications

for forecasting, Eastern Economic Journal 11: 3-15.

Blank, S. C. 1991 . "Chaos"  in futures markets? A nonlinear dynamical analysis,

The Journal of Futures M arkets 11: 711-728.

Brock, W. A.; Dechert, W. D.; and Scheinkman, J. A. 1987. A test for

independence based on the correlation dimension. Working Paper #8702.

Department of Economics, University of Wisconsin.

Brock, W. A; Hsieh, D.; and LeBaron, B. 1991. Nonlinear dynamics, chaos, and

instability, statistical theory and economic evidence. Cambridge, MA: MIT

Press.

Brock, W.A., and  Sayers, C. 1988. Is the business cycle characterized by

deterministic chaos? Journal of Monetary Economics 22: 71-90.

Broomhead, D. S.; Huke, J. P.; and Muldoon, M. R. 1992. Linear filters and

non-linear systems, Journal of the Royal Statistical Society B 54: 373-382.

Broomhead, D. S.; Jones, R.; and King, G. P. 1987. Topological dimension and

local coordinates from time series data , Journal of Physics A 20: L563-

L569.

Casdagli, M, and Eubank, S. (eds.) 1992. Nonlinear modeling and forecasting.

Santa Fe Institute Studies in the Science of Complexity, Addison-W esley,

Redwood City, CA.

Cecen, A. A., and Erkal, C. 1996. Distinguishing between stochastic and

deterministic behavior in foreign exchange rate returns: Further evidence.

Economics Letters 51: 323-329.

DeCoster, G. P .; Labys, W. C.; and Mitchell, D. W. 1992. Evidence of chaos

in commodity futures prices, Journal of Futures Markets 12: 291-305.

DeGrauve, P.; Dewachter, H.; and M.Embrechts 1993. Exchange rate theory:

Chaotic models of foreign exchange markets. Blackwell Editions.

Diebold, F. X., and Nason, J. A. 1990 . Nonparametric exchange rate

prediction? Journal of International Economics  28: 315-332.

Ding, M.; Grebogi, C.; Ott, E.; Sauer, T .; and Yorke, J. A. 1993. Plateau onset

for correlation dimension: When does it occur? Physical Review Letters 70:



Multinational Finance Journal62

3872-3875.

Eldridge, R. M.; Bernhardt, C.; and Mulvey, I. 1993. Evidence of chaos in the

S&P 500 cash index. Advances in Futures and Options Research 6: 179-

192.

Fialho, M., and Pedreira, C. 1996. An interval neural network architecture for

time series prediction. In A. P. Refenes, Y. A. Mostafa, J. Moody, and A.

Weigend (eds.) “Neural networks in financial engineering”, p.p. 622-627,

World Scientific.

Frank, M.; and Stengos, T. 1989. Measuring the strangeness of gold and silver

rates of return, Review of Economic Studies 56: 553-567.

Fraser, A. M., and Swinney, H. 1986. Independent coordinates for strange

attractors from mutual information, Physical Review A 33: 1134-1140.

Grassberger, P., and Procaccia I., 1983. Characterization of strange attractors,

Physical Review Letters 50: 346-349.

Guillaume, D.M ., 1995. A low-dimensional fractal attractor in the foreign

exchange markets? Chapter 15. In R.R.Trippi (ed.) Chaos and nonlinear

dynamics in the financial markets. Irwin Professional Publishing.

Heiner, R. A. 1983 . The origin of predictab le behavior, American Economic

Review (September): 560-595.

Hsieh, D. 1989. Testing for nonlinear dependence in daily foreign exchange

rates, Journal of Business 62: 339-368.

Hsieh, D. 1991. Chaos and nonlinear dynamics: Application to financial

markets, The Journal of Finance XLVI (5): 1839-1877.

Jaditz, T., and Sayers, C. L. 1995. Nonlinearity in the interest rate risk premium.

335-357. 3n: R. Trippi (ed). Chaos and Nonlinear Dynamics in the Financial

Markets. Irwin. 

Kaen, F. R., and Rosenman, R. E. 1986. Predictable behavior in financial

markets, American Economic Review (March): 212-220.

Lo, A., and MacKinley, A. C. 1989. The size and power of the variance ratio

test in finite samples, Journal of Econometrics 40: 203-238.

Mayfield, E . S., and Mizrach, B. 1992. On determining the dimension of real-

time stock-price data, Journal of Business & Economic Statistics 10: 367-

374.

Mirowski, P., 1990. From Mandelbrot to chaos in economic theory, Southern

Economic Journal, 57(2): 289-307.

Press, W.; Teukolsky, S.; Vetterling W.; and Flannery, B. 1996. Numerical

Recipes in C. Cambridge University Press.

Ramsey, J.B.; Sayers, C. L.; and P.Rothman 1990. The statistical properties of

dimension calculations using small data sets: Some economic applications,

International Economic Review 31(4): 991-1020. 

Sauer, T.; Yorke, J. A.; and Casdagli, M. 1991. Embedology, Journal of

Statistical Physics 65: 579-616.

Savit, R. 1988. W hen random is not random: An introduction to chaos in market

prices, The Journal of Futures M arkets 8(3): 271-289.



63Nonlinear Dynamics

Savit, R. 1989. Nonlinearities and  chaotic effects in options prices, Journal of

Futures M arkets 9(6): 507-518.

Scheinkman, J. A., and LeBaron, B. 1989. Nonlinear dynamics and stock

returns, Journal of Business 62(3): 311-337.

Schreiber, T. 1993. Determination of the noise level of chaotic time series,

Physical Review E 48: R13-R16.

Shaffer, S. 1991. Structural shifts and the volatility of chaotic markets, Journal

of Economic Behavior and Organization 15(2): 201-214.

Szpiro, G. G. 1997. Noise in unspecified, non-linear time series, Journal of

Econometrics 78: 229-255.

Takens, F. 1981. Detecting strange attractors in turbulence. 336-381. In: D.A.

Rand, and  Young, L. -S. (eds), Dynamical Systems and Turbulence.

Lecture Notes in Mathematics 898. Springer-Verlang.

Theiler, J. 1986: Spurious dimension from corre lation algorithms applied to

limited time-series data, Physical Review A 34: 2427-2433.

Theiler, J., and Eubank, S. 1993 . Don't bleach chao tic data, Chaos 3: 771-782.

Timmer, J. 1998. Modeling noisy time series: Physiological tremor,

International Journal of Bifurcation and Chaos 8(7): 1505-16.

Willey, T. 1992. Testing for nonlinear dependence in daily stock indices,

Journal of Economics and Business 44: 63-76.

Yang, S.-R., and Brorsen, B. W. 1993. Nonlinear dynamics of daily futures

prices: Conditional heteroskedasticity or chaos? The Journal of Futures

Markets 13: 175-191.


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21

