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Vector autoregressive models are increasingly being used in the analysis of
relationships within and between financial markets. In such models, there are
circumstances that require zero entries in the coefficient matrices. Such
circumstances can be particularly relevant in the context of markets with special
characteristics, such as emerging economies. This paper shows that a direct
extension of the use of the Yule-Walker relations for fitting vector
autoregressive models with zero-non-zero patterned coefficient matrices is
inconsistent with statistical procedures as the resultant estimated variance-
covariance matrix of the white noise disturbance process becomes non-
symmetric. This inconsistency can cause a breakdown when testing financial
theory. The paper provides a consistent adjustment which fits with the theory.
The practical use of the adjustment is demonstrated in a vector system
comprising variables from the Hong Kong stock market and foreign exchange
markets (JEL C13, C32, C63, G10, G15). 

Keywords: foreign exchange market, time series,  VAR models, Yule-Walker
relations. 

I. Introduction

Vector autoregressive (VAR) models represent an advance in the
analysis of time series. These models provide a device that has proved
to be a more computationally efficient tool, and therefore less costly,
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1. Examples of financial and economic variables that have been tested for Granger-
causal relations include volatility transmission (Bhattacharya et al. 2000), stock markets
and foreign exchange (Bekaert and Hodrick 1992), volatility of stock market returns
(Whitelaw 1994), monetary policy and the stock market (Thorbecke 1997), cross-market
relationships (Malliaris and Urrutia 1992) and interest rates (Hassapis et al. 1999).

than conventional financial and econometric time series techniques. In
recent years the use of VAR models as a means of modeling financial
time series has become common. In particular, VAR modeling has been
increasingly employed to examine relationships in stock markets. For
instance Eun and Shim (1989) estimate a VAR using index returns on
nine stock markets to examine interactions among the markets. In the
context of emerging stock markets, Bekaert et al. (1999) estimate a
VAR using capital flows, equity returns, dividend yields and interest
rates to examine the extent to which lower interest rates contribute to
increased capital flows. In a similar study, Froot et al. (1998) employ
VAR estimation to examine the relationship between capital flows and
equity returns in emerging markets.

The use of VAR models for econometric research has in part been
driven by the desire to provide users with a relatively simple forecasting
procedure accessible to non-specialists. However early researchers
realised that heavy parameterisation of their VAR models resulted in
poor ex-ante forecasting performance. Their proposed procedures
rested on the assumption that the coefficient matrices of the VAR model
had all non-zero entries. In effect, the assumption of non-zero entries
restricts the range of possible model specifications. Further, if the true
underlying VAR process has zero entries in its structure, then sub-
optimal model design induced by assuming a full-order structure can
produce misleading inferences and inferior projections. Consequently,
models have been developed that allow for zero entries in the coefficient
matrices such as a zero-non-zero (ZNZ) patterned structure. However,
implementation of a ZNZ structure in a VAR is difficult given the large
number of parameters and possibilities. That is, in the absence of an
effective approach to find the optimal model, relaxation of the
assumption of non-zero entries is problematic. 

The issue is also relevant when investigating causality.1 Optimal
VAR models with ZNZ patterned coefficient matrices can also be used
as a basis for detecting Granger-causality and the instantaneous



VAR Modeling and Yule-Walker Relations 37

2. Of note, recent cointegration work suggests that, if cointegrating relations exist
between the variables, then the use of the vector error-correction model, which is associated
with the VAR model with unit roots, may be more effective for testing Granger-causality.

causality among time series variables.2 Granger-causality and the
instantaneous causality have been defined by Granger (1969), and are
based entirely on the predictability of the objective variables such that
the definitions make no explicit use of economic and financial laws to
provide a priori restrictions on the structure. As such, the imposition of
non-zero restrictions is inconsistent with their basic theory. Further, the
growing reliance on VAR models and their use in testing for causality
is limited to the extent that non-zero entries are initially assumed.

One approach to select the optimal ZNZ patterned VAR model has
been advocated by Penm and Terrell (1984), and it centres on their
development of a search algorithm using the Yule-Walker relations in
conjunction with model selection criteria. However, that approach does
not examine the estimation of the residual variance-covariance relation,
rather only the Yule-Walker coefficient relations are considered. In this
paper, an approach is provided that considers the variance-covariance
relation within the Yule-Walker relationship and leads to an effective
approach to identify the optimal ZNZ model within the context of a
VAR system. The development of the approach in this paper is a
significant contribution given the extent to which prior literature has
imposed non-zero restrictions. The paper provides an empirical
application of the approach that focuses on the Hong Kong stock
market. The application highlights the usefulness and practicality of the
approach. 

The remainder of this paper is organised as follows. Section II
provides the detailed background and describes the use of the Yule-
Walker relations for fitting VAR models. Section III shows the problems
and theoretical inconsistency that arise by using a two-variable VAR
example. Section IV presents the new approach and contains the main
contribution of the paper. In section V, an application concerning the
Hong Kong stock market and the foreign exchange market is presented
and concluding remarks are provided in section VI. 

II.  Using the Yule-Walker Relations for Fitting VAR Models

In this section, the fitting of a VAR with zero coefficient restrictions is
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presented. First, let  be a zero mean,( ) ( ) ( ) ( ){ }1 2, , , mu t u t u t u t ′= �

wide-sense stationary time series of dimension m.  Consider the vector
AR (p) model of the form:
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obey the following Yule-Walker relations.  The Yule-Walker coefficient
relations are:
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The Yule-Walker residual variance-covariance relation is:

,  (5)0
1

ˆ ˆ
p

k k
k

A V−
=

Γ + Γ =∑

where ; N is the sample size,  and  are the estimates ofk k−′Γ = Γ ˆ
kA V̂

Ak and V respectively, and  is described as the generalised residualV̂

sum of squares.
In a full-order VAR model, all possible models with zero coefficient
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elements are neglected. For example in a bivariate VAR model when p
= 5, the coefficients, A1, A2, up to and including A5 are assumed non-
zero. However there are 220 = 65,536 possible models in this example.
Thus a large number of possible models will be ignored under the
restriction of non-zero coefficients. More important, if the true
underlying VAR process has a zero-non-zero (ZNZ) patterned structure,
a sub-optimal model design such as a full-order structure can produce
less powerful and therefore potentially misleading inferences and inferior
projections. 

Penm and Terrell (1984) have proposed a search algorithm, using the
Yule-Walker relations for fitting VAR models in conjunction with model
selection criteria, to select the optimal ZNZ patterned VAR models.
Background information on the fitting of VAR models using the Yule-
Walker relations is presented in appendix 1. In the course of using the
Yule-Walker relations to conduct the fitting of ZNZ patterned VAR (p)
models, as described in appendix 1, only the following p+1 lag
covariance matrices are required to compute the estimated coefficient
matrices and residual variance-covariance matrix::

.0 1, , , pΓ Γ Γ�

However, the estimated V using the usual least squares (LS) method is
as follows:

,
1

1ˆ ˆ ˆ
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i p
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N p
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− ∑

where  denotes the estimate of .îε ( )iε
This method suffers from the need to estimate and store all individual

mx1 residual vectors, , t = 1, 2,...,  N and then compute  for eacht̂ε V̂

proposed ZNZ patterned VAR model. In order to estimate individual
residual vectors, all observation vectors u(t), t = 1, 2,..., N must be held
in storage for conducting estimation. When using the LS method, at̂ε
very large number of candidate ZNZ patterned VAR models must be
estimated before the optimal model can be selected, which involves a
considerable amount of computational cost in terms of execution time
and memory storage and these costs are important considerations. Many
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researchers, working with large samples will be aware of this inefficient
procedure. It is obvious that estimation of the residual variance-
covariance matrix, which minimizes the need for computing resources,
becomes an important issue. As outlined later in the paper, there is no
need to estimate individual residual vectors when an adjustment is made
to the Yule-Walker approach. This approach is simple and avoids a
considerable amount of computational costs.

The issue in Penm and Terrell (1984) is that their estimate of V using
the Yule-Walker residual variance-covariance relation of (5) is not
analyzed. Only the Yule-Walker coefficient relations in (4) are
canvassed. A direct extension of the Yule-Walker residual variance-
covariance relation to fit the ZNZ patterned VAR model is inappropriate
as it is inconsistent with statistical theory. The problem is that the
resultant estimated variance-covariance matrix of the white noise
process becomes non-symmetric, violating the condition that V must be
symmetric. This violation has important implications. One consequence
is that VAR cannot be converted to an equivalent vector moving
average (VMA) model as proposed in Penm and Terrell (1986) to
conduct testing for Granger-causality. Further, innovation accounting
proposed by Lee (1992) will not work under these conditions (Brailsford
et al. 2001). Hence, this failure to ensure symmetry of estimates of V
creates the motivation for developing an adjustment in this paper to the
Yule-Walker relations for fitting of ZNZ patterned VAR models. 

An alternative solution is to use other approaches that do not rely on
the Yule-Walker relations. However, each of these approaches are
problematic, particularly in terms of large computational costs. These
alternative methods are briefly outlined below.

First, consider the standard least squares (LS) approach. As
described in appendix 1, for fitting a full-order VAR (p) model using the
Yule-Walker relations, the following block Toeplitz matrix Cp+1 can be
constructed:
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3. The proposed model selection criteria use the generalised residual sums of squares

and the following relation for the estimate of :V

, (7)1 1
ˆ

p p p pV C C d+ += =

where di, i = 1,..., p+1 are diagonal block entries of the block diagonal
matrix resulting from a block Choleski decomposition for Cp+1.  This

outcome indicates that in the course of computing  for the VAR (p)ˆ
pV

model, the generalised residual sums of squares3 for all the lower order
VAR models fitted to the data are also obtained. However as described
in appendix 2, this outcome cannot be achieved by using the conventional
LS approach. Since RLS(p) for each different VAR model must be
reconstructed from the observations to conduct individual fittings, and
the observations must be saved in storage for reconstructing RLS(i), i =
1,..., p, a considerable increase in computational costs, based on
execution time and data storage, will be required.  Note that these
weaknesses of the conventional LS method also exist in the remaining
steps of selecting the optimal VAR, and become severe when the
number of lags, or the number of variables, is large. Thus the commonly
employed LS approach is considerably more computationally costly than
the Yule-Walker approach. 

Second, the generalized least squares (GLS) method can be
conducted by applying the conventional LS approach as a basis. After

the symmetric and positive definite  is estimated by the LS method,V̂

there exists an mxm non-singular matrix , such that . WeK̂ 1ˆ ˆ ˆV KK− ′=
can pre-multiply u(t) by , and then follow the LS estimation for1K̂ −

fitting of the VAR models to obtain the conventional GLS estimates.
However as the LS approach to conduct the selection of the optimal
ZNZ patterned VAR is computationally expensive when the number of
possible candidate models could be billions, the conventional GLS
method will similarly suffer from excessive computational costs. 

Third, the maximum likelihood (ML) approach is a non-linear
approach but becomes infeasible whenever the number of parameters
is large (Chen and Zadrozny 1998). In addition there exist innumerable
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4. See section 3 in Chen and Zadrozny (1998).

5. However the approach in Chen and Zadrozny (1998) addresses an interesting topic
of estimation for mixed frequency data. Incorporating their approach into the ZNZ
patterned modeling for mixed frequency data deserves further investigation.

candidate models in the ZNZ patterned VAR environment. The ML
approach needs to apply to each individual VAR model separately, and
no previous computational information can be utilised. 

Chen and Zadrozny (1998) propose the extended Yule-Walker
equation to estimate a VAR for mixed frequency data. The estimated V
for their approach is as follows:4

 
1

1ˆ ˆ ˆ ,
N

i i
i p

V
N p

ε ε
= +

′=
− ∑

which is identical to the conventional LS approach. Thus the approach
of Chen and Zadrozny also needs to consider each VAR model
independently for estimation of the individual residual variance-
covariance matrices. In complete data cases (ie. no missing values),
their approach only concerns full-order models. The ZNZ patterned
modeling with no missing data is not investigated in Chen and Zadrozny.5

In appendix 2, it is shown that the conventional LS method is quite

different from the Yule-Walker approach. Thus,  using the LS methodV̂

is also quite different from  under the Yule-Walker approach. ItV̂
follows that the approach of Chen and Zadrozny (1998) has ignored the

issue of estimating the residual variance-covariance matrix. Although V̂

using the LS method is asymptotically equivalent to  using the Yule-V̂
Walker approach, these two estimators can be quite different in a finite

sample. If  proposed in Chen and Zadrozny is estimated using theV̂
Yule-Walker approach, then in the case of complete data the approach
in the current paper can be employed to select the optimal ZNZ
patterned VAR. Thus, again a considerable amount of computational
costs can be avoided.

The most successful applications in ZNZ patterned VAR modeling
are associated with Granger non-causality and indirect causality
detection. This is because both Granger non-causality and indirect
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causality detections are crucially dependent on making use of zero
coefficient entries in the true structure, where the structure does indeed
include several zero entries. Application of VARs to economic and
financial time series data has revealed that zero entries are indeed
possible (Caines et al. 1981, Penm et al. 1992). Since the ZNZ patterned
VAR modeling allows for zero entries, the selected optimal ZNZ
patterned VAR provides a straightforward and effective means of
indicating all Granger-causality, Granger non-causality and indirect
causality from the coefficient matrices on the lagged terms.

III.  The Inconsistency in Using Yule-Walker Relations

In this section, the theoretical inconsistency of the use of the Yule-
Walker relations for fitting of ZNZ patterned VAR models is
demonstrated using a two-asset example. 

In considering a ZNZ patterned VAR model, zero entries in the
parameter matrices Ak of (1) are allowed. If y1,t and y2,t are the log
prices of the assets, then the returns on the assets are defined by

and . Both  and  are jointly determined by1, 1,t ty z∆ = 2, 2,t ty z∆ = 1,tz 2,tz

the following two equations:

, (8)1, 12 2, 1 1,t t tz a z ε−+ =

. (9)2, 21 1, 1 22 2, 1 2,t t t tz a z a z ε− −+ + =

In this two-equation system the first equation shows that  is caused1,tz

by , while the second equation indicates that  is caused by ,2,tz 2,tz 1,tz

thereby creating a feedback relation.
The equivalent VAR model of this system can then be expressed as:
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where the white noise process comprises two components and ,1,tε 2,tε
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with:
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The Yule-Walker coefficient relations are now used to estimate a12, a21,
and a22. Since a11 = 0, and  is uncorrelated with the asset return,1,tε

, the following relation is apparent:2, 1tz −
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From (10), since the asset return vector  is uncorrelated1, 1 2, 1t tz z− −
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Thus the coefficient estimates in terms of the correlation functions
between asset returns are established. Of note, the use of the above
approach is identical to the use of equation (A.1.3) as proposed in
appendix 1 for fitting of the ZNZ patterned VAR models.

As a result the estimate  in equation 5 becomes:V̂
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which is non-symmetric. Intuitively, V is symmetric in the true model of

(1) and there is a need for the estimate  to conform to the behaviourV̂

of V. Therefore the estimate  must be a symmetric matrix. AsV̂

described earlier, this non-symmetric  violates the symmetric conditionV̂
required in Lee (1992) and in Penm and Terrell (1986). This violation
indicates that, in practice, the innovation accounting described in Lee will
not work (Brailsford et al. 2001), and a VAR model cannot be converted
to its equivalent VMA model as proposed in Penm and Terrell to
conduct testing for Granger-causality. Thus an adjustment to the Yule-
Walker relations is required.

IV. The Adjustment

The necessary adjustment to the Yule-Walker relations for fitting of
VAR models with ZNZ patterned coefficient matrices follows directly
from the inconsistency demonstrated in the previous section.

With the definition of the variance-covariance matrix in (2), 
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Since the first matrix of equation 13 is symmetric, the second matrix
is the transpose of the third matrix, and the remaining product matrix is

also symmetric, therefore the matrix  is symmetric.V̂
An analogous approach using equation 13 is feasible. From equation

2, 
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(14)0
1 1 1 1
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It is obvious that this  is symmetric. Since  is symmetric.V̂ 0,j j−′Γ = Γ Γ
If k is redefined as j, the second matrix is the transpose of the third
matrix; and if j and k are redefined as k and j respectively, the fourth
matrix becomes 

,
1 1

ˆ ˆ
p p

j k j k
k j

A A−
= =

′Γ∑∑

 which is the transpose of the fourth matrix itself. 
In addition, comparing equation 14 to the estimator of V using

individual residual vectors, the structure of (14) is computationally
efficient in terms of both execution time and storage requirements, and
provides the obvious relations to link the covariance matrices with
different lags.

Of note, consideration of the contemporaneous correlation in ( )tε
cannot be ignored. A ZNZ patterned VAR model can be viewed as a
system of ‘seemingly unrelated regressions’ as originally proposed by
Zeller (1962). As the regressors in each equation of the VAR model are
no longer necessarily the same, the generalised least squares (GLS)
coefficient estimator using the Yule-Walker relations for the ZNZ
patterned VAR is more efficient than the estimator using equation (14).
Brailsford et al. (2001) show that this GLS estimator is an approximation
to the ML estimator asymptotically. Henceforth the notation GLS-YW

is used for this estimator. As described earlier, . We1ˆ ˆ ˆV KK− ′=
premultiply u(t) by , and then follow the proposed method of using1K̂ −

the Yule-Walker relations for fitting of VAR models, and so obtain the
GLS-YW coefficient estimates of the ZNZ patterned VAR model. 

V. Empirical Testing

In this section, an application is presented to illustrate the practical use
of the algorithm. First, consider a potential causality relationship between
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6. The relationship between stock prices and exchange rates has a considerable
literature which involves purchasing power parity. For discussion, see Frenkel (1981),
Dumas and Solnik (1995).

7. In Hong Kong, only the Hong Kong Monetary Authority uses the fixed exchange
rate. This fixed rate does not apply to other dealers and fluctuations thus occur.

stock and exchange rate markets. For instance, flows of capital
influence exchange rate movements and such flows have been shown
to be related to equity returns (eg. Froot et al. 1998). Of course, the
relationship between exchange rates and stock prices is more complex
than implied here and involves consideration of parity conditions and
inflationary expectations.6 Nevertheless, the purpose here is illustrative
only and shows how the effect of correctly estimating the residual
variance-covariance matrix can provide insights into Granger-causal
relationships among financial variables. In a similar vein, Bekaert and
Hodrick (1992) examine the predictability of excess returns on equity
and foreign exchange markets using a six-variable VAR model.

The sample period is chosen as 1 January 1999 to 31 December
1999 and all data are sampled daily. The selected equity market is Hong
Kong. This market is an international financial centre, and allows free
flows of international funds. Within this context, the following three
variables are studied contemporaneously in a stochastic vector system
using the ZNZ patterned VAR modeling:

(i) Euro to US dollar - exchange rate (EUFX)
(ii) Hong Kong’s Hang Seng - stock price index (HSI)
(iii) Hong Kong dollar to US dollar - exchange rate (HKFX)

The Hang Seng Index is the main stock market indicator in Hong Kong.
This index comprises 33 constituent stocks which are representative of
the market. The aggregate market capitalization of these stocks
accounts for about 70% of the total market capitalization on Hong
Kong’s stock exchange. At the beginning of 1999 the HSI was 9,000.
However it climbed to 17,000 by the end of 1999, closing with a 90%
gain over the year. 

The Hong Kong Monetary Authority uses a pegged exchange rate
fixed at HK$7.8 to US$1. However, deviations from this rate occur
through the dealer market.7 The sample period coincides with the
introduction of the Euro. 
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8. There is a large literature that traverses the best method of removing non-
stationarity in a series. The approach here involves a polynomial trend, because of its
ability to remove the long-term non-stationarity in any series without seriously impacting
on other cyclical variation closely adjacent to non-stationary long-term movements.

The variables are log transformed such that u1(t)=log(EUFX),
u2(t)=log(HSI) and u3(t)=log(HKFX). Following Penm and Terrell
(1984), Forsythe’s (1957) method is initially used for generating
orthogonal polynomials to assess the data for suitable detrending to
produce stationarity.8 The results show that detrending using a first-
order polynomial is required before fitting the VAR models. The
coefficient estimates and associated standard errors from fitting the
polynomial are reported in table 1. 

After detrending, a maximum order of 36 is assigned and the search
procedures proposed in Penm and Terrell (1984) are employed to obtain
the optimal ZNZ patterned VAR model. Each of three order selection
criteria - Akaike, Schwarz and Hannan - is used to determine the best
specification. The ability of these three order selection criteria to
determine the true specification of a stationary VAR has been examined
using a simulation approach by Penm and Terrell (1984). Their results
suggest that the Schwarz criterion (SC) is superior in order-identification
to the other two alternatives in ZNZ patterned VAR modeling for
causality studies. Therefore, the specification determined by SC is
selected and used as the benchmark model for analysing lead-lag
relations. 

TABLE 1. Orthogonal Polynomial Regression for Trend Removal

Intercept Orthogonal polynomial P1

Log(EUFX) –.1159 .0004
(.0028) (.0000)

Log(HSI) 9.2064 .0018
(.0093) (.0000)

Log(HSFX) 2.0469 .0001
(.0000) (.0000)

Note:  This table reports the results of fitting a first-order polynomial to the three time
series under examination. The series comprise daily data sampled over the period 1/1/1999
to 31/12/1999 and are the Euro (EUFX), Hang Seng Stock Index (HIS) and the Hong Kong
dollar exchange rate (HSFX). The values in parentheses are standard errors of the coefficient
estimates.
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9. Tiao and Tsay (1989) proposed an algorithm using the crit(m,j) criterion to select
the vector autoregressive moving average process with zero entries. After the final model
is selected, their algorithm was then applied to the residual series to test whether this series
is a vector white noise process.

The coefficient estimates of the chosen specification using the
adjusted Yule-Walker relations are presented in table 2. To check the
adequacy of the model fit, the strategy suggested in Tiao and Tsay
(1989) is used, with the proposed algorithm applied to test the residual
vector series, using the SC criterion.9 The results in table 2 support the
residual vector being a white noise process. The procedures outlined in
section IV to obtain the GLS-YW estimator are then carried out, with

TABLE 2. The Optimal ZNZ Patterned VAR

Coefficient Estimator The Yule-Walker Approach GLS-YW

( )

( ) ( )

1

.9630 0 0

(.0172)

.1680 .9416 0ˆ
(.0585) .0183

.0009 0 .8700

.0004 .0311

A

− 
 
 
 − −
 
 
 − 
  

( )

( ) ( )

.9630 0 0

(.0171)

.0061 .9409 0

(.0016) .0172

.0053 0 .8705

.0018 .0303

− 
 
 
 − −
 
 
 − 
  

.3783 .1239 .0007

.1239 2.732 .0006

.0007 .0006 .0001

− 
 
 
 − 

Residual analysis p 0 1 2 3 4 5
Value of SC 1.0 1.031 1.065 1.102 1.141 1.180

Note:  This table presents the results from fitting a VAR to the three time series under
examination. The series comprise daily data sampled over the period 1/1/1999 to
31/12/1999 and are the Euro (EUFX), Hang Seng Stock Index (HIS) and the Hong Kong
dollar exchange rate (HSFX). The values in parentheses are standard errors of the non-zero
coefficient estimates. The selection criterion employed is Schwarz criterion (SC) and
normalised values of SC are presented. The optimal lag selected for the variables under
investigation in the VAR is 1. The residual analysis confirms the residuals have white noise
characteristics. 

u(t) = {log EUFX, log HSI, log HKFX}’

Type of
coefficient
matrices
selected 

Estimate of
Residual
variance-
covariance
matrix (x 10-4)
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the resultant comparative output also presented in table 2. 
The relationships identified by the three selection criteria are

markedly similar. All the determined specifications consistently indicate
that the Euro is the major variable which provides leading information for
the other components of the system. The lagged Euro enters not only its
own equation but also those of HSI and HKFX. In all the determined
specifications, the lagged level of HSI does not enter any of the
exchange rate equations, indicating that variations in the Hong Kong
stock market index provide little leading information for the exchange
rate markets, as expected. Also no lagged HKFX components enter the
equation of the HSI and EUFX, indicating that this variable contains little
leading information for either the local stock market or the Euro. Given
that the HKFX is relatively stable, this latter result is not surprising. 

The more surprising result is the influence of the Euro. Hong Kong
is known as an open market and there are considerable international
capital flows into and out of its stock market. A major component of
these flows is from Europe. Moreover, it is well-known that the
weakness of the Euro has been a salient feature in international markets
over the past two years. As noted above, over the sample period, the
Hong Kong market surged by 90%. Hence, a link between the Euro and
the Hong Kong stock market is feasible. 

A more complete analysis would include other economic and
financial variables such as net capital flows, interest rates and money
supply, which could all play a significant role. Indeed, our model could
be extended to incorporate the recent work of Bekaert et al. (1999) who
propose a larger system. However, as discussed earlier, this empirical
examination is for illustrative purposes. The importance of this
application is that it shows the procedures which can be applied to any
set of variables. As an example, in the context of emerging markets
where traditional models and theories have met with little success, such
exercises are likely to provide valuable insights into the relationships and
causality between financial variables.

VI.  Conclusion

The use of VAR modeling in financial economics has become common.
However, the models are typically constrained through problems of
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over-parameterisation. In this paper, an adjustment to the Yule-Walker
relations for fitting of ZNZ patterned VAR models is presented. The
adjustment is consistent with statistical procedures in theory and has the
advantages of computational efficiency and reliability. 

The procedure has been applied to the Hong Kong stock market,
focusing on its relationship with international foreign exchange markets.
The results of this exercise are helpful in understanding linkages
between various markets and/or financial variables. As indicated above,
in the area of emerging markets where there is often no clear consensus
concerning relationships among financial variables and each market
appears to exhibit almost unique characteristics, this procedure can
potentially yield important insights.

Appendix 1: The Use of the Yule-Walker Relations for Fitting
VAR Models 

Three model selection criteria are employed to select the optimal ZNZ
patterned VAR. They are:

,[ ]ˆlog 2 /pAIC V N S= +

,[ ]ˆlog 2 log log /pHC V N N S= +

,[ ]ˆlog log /pSC V N N S= +

where S is the number of functionally independent parameters
estimated.

The detailed method of selecting the optimal ZNZ patterned VAR
with the smallest value of each selection criterion is summarised in
Brailsford et al. (2001). 

A.  Fitting of full-order VAR models

In considering the use of the Yule-Walker coefficient relations for fitting
of a full-order VAR(p) model of (1), equation 4 can be expressed as:
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, (A.1.1)p p pRΛ = −Π
where 

,{ }1 2
ˆ ˆ ˆ

p pA A AΛ = �

 , { }1 2p pΠ = Γ Γ Γ�

and

 .

0 1 1

1 0 2

1 2 0
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p

p

p p

R

− −

−

− −
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 Γ Γ Γ =  
 Γ Γ Γ  

�

� � �
�

Analogously, to fit a VAR (p+1) model, we have:

.

0 1

1 0 1
1

0

1 0

p

p p
p

p p

R
R

− −

−
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−

Γ Γ Γ 
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Now form a block Toeplitz matrix Cp+1 of  (6), and have the following
block Choleski decomposition:

, (A.1.2)1 1 1 1p p p pC L D L+ + + +′=

where  is a lower block triangular matrix, and  is a block1pL + 1pD +

diagonal matrix with diagonal block entries , i = 1,..., p+1.id

Thus, we have , and can achieve1
1 0

ˆ
p p p p p p pC C R C V−

+ ′= Γ − Γ Γ =

the outcome: . More importantly, in the course of computing1
ˆ

p pV d +=

, di, i = 1,..., p+1 will be obtained by using (A.1.2). Since  is the ˆ
pV id V̂

for the VAR (i–1) model, the generalised residual sum of squares for all
the lower order VAR models fitted to the data are also obtained.
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Therefore a considerable amount of computational cost can be avoided.

B.  Fitting of ZNZ patterned VAR models

In considering the use of the Yule-Walker coefficient relations for fitting
of ZNZ patterned VAR models of (1), the coefficient estimates obey the
following relationship:

(A.1.3)( ) ( ) ( ),p r r rZ C C Cα γ=

where , Cr is an integer{ } ,p m pZ I R= ⊗ { } ,pvecα ′= Λ { }pvecγ ′= Π

set which contains , and the th entries of 1 2, , , rc c c� ( )1 2, , , rc c c� α

are constrained to zero. Then  and are formed by placing( )rCα ( )rCγ

0 in the the row entries of  and , and  is( )1 2, , , rc c c� α γ ( )rZ C

formed by placing 1 in the  diagonal( ) ( ) ( ){ }1 1 2 2, , , , , ,r rc c c c c c�

entries of Z and 0 everywhere else in the  rows and( )1 2, , , rc c c�

columns of Z.
Also, the estimate of V is:

,0
1 1 1 1

ˆ ˆ ˆ ˆˆ
p p p p

k k j j k j k j
k j j k

V A A A A− −
= = = =

′ ′= Γ + Γ + Γ + Γ∑ ∑ ∑∑

which is the equation (14) in this paper. 
Note that only the p+1 lag covariance matrices shown in (3) are

required to compute  and by using the Yule-Walker approach.ˆ
kA V̂

Further, fitting of subset VAR models, which are the VAR models with
intermediate lags constrained to zero matrices, can also be achieved by
using both (A.1.3) and (14).

Appendix 2: The Use of the LS Method for Fitting of VAR
Models

To fit a full order VAR (p) model of (1) for a given set of observations
{u(t), t = 1,..., N}, the estimated V using the usual least squares (LS)
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method is as follows:

, (A.2.1)
1

1ˆ ˆ ˆ
N

i i
i p

V
N p

ε ε
= +

′=
− ∑

 where  denotes the estimate of .îε ( )iε
For simplicity, consider the scalar case. Thus m=1. Equation (A.2.1)

can be rewritten as:

.( ) ( ) ( ) ( )
1 1 1

1ˆ ˆ ˆ
p pN

k k
i p k k

V u t a u t k y t a u t k
N p = + = =

   
= − − − −   −    

∑ ∑ ∑

Thus the associated linear regression model can be expressed as:

.

( )

( )

1( ) ( 1) ( )

( 1) ( ) (1) 1p

u N u N u N p a N

u p u p u a p

ε

ε

 − − −     
      = +      
      + − +      

�
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�

 

The usual least squares estimate of  in the model1 pa aβ  = − − �

,Y X β η= +
 is then:

.( ) 1ˆ X X X Yβ −′ ′=
 Thus we have:

( ) ( )LSR p X X′=

.

( ) ( ) ( )

( ) ( ) ( )

1 1
2

1 1
2

1

1

1

N N

i p i p

N N

i p i

u i u i u i p

u i u i p u i

− −

= =

− −

= =

 − + 
 
 =
 
 − +  

∑ ∑

∑ ∑
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Analogously, to fit a VAR (p–1) model, we have:

( )1LSR p − =

.

( ) ( ) ( )

( ) ( ) ( )

1 1
2

1 1

1 1
2

1 1

1

1

N N

i p i p

N N

i p i

u i u i u i p

u i u i p u i

− −

= − = −

− −

= − =

 − + 
 
 =
 
 − +  

∑ ∑

∑ ∑

�

� � �

�

However, 

.( ) ( )1

.
LS

LS

R p
R p

− 
≠  

 

�
�

Note that every (i,j) entry of  is different from the (i,j) entry( )1LSR p −

of . It is obvious that the usual LS method is quite different from( )LSR p

the Yule-Walker approach.
Thus, in fitting a VAR (p) model, the generalised residual sum of

squares for all the lower order VAR models fitted to the data cannot be
obtained by using the LS method. Note that these weaknesses of the LS
method also exist in fitting for VAR models with zero entries, and
become severe when the number of lags of (1), or the number of
variables in the system, is large.
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