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induced any non-linearities in the residuas; and the FIGARCH specification is
found to be adequate (JEL C22, F31).
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|. Introduction

This paper is concerned with some of the intriguing features of high
frequency foreign exchange rates. In particular, we explore some
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aspects of the property of long memory, persistent volatility that has
becomeawel | documented feature of these markets; e.g. see Andersen
and Bollerslev (1997b, 1998) and Dacorognaet a. (1993). Wefocuson
the long memory volatility parameter obtained by estimating the
FIGARCH model of Baillie et al. (1996) from both high and low
frequency returnsdata. While such model shave been foundto provide
good descriptions of daily return volatility, little is known of their
adequacy in dealing with higher frequency data. Hence this paper
investigatesthe general appropriatenessof the FIGARCH specification
for many different frequencies of DM-$ returns. Second, we alsowish
to seeif the FIGARCH model is consistent with thetheory that returns
areaself similar process, whichimpliesthelong memory parameter is
invariant to the sampling frequency; see Beran (1994). Apart from the
standard diagnostic tests, the appropriateness of the FIGARCH model
for 30 minute dataiis also investigated for the presence of further non
linearities. Thisseemsespecially important given the possibility that the
filtering method for removingintraday periodicity may havepotentially
induced spurious relationships. The estimation of the correlation
dimension andtheresultsfromthe BDStest fail tofind any evidenceof
significant non-linearity intheresiduas. Theoveral conclusionisthat the
FIGARCH model appears to be a good specification for the filtered
returns series. An interesting implication of the robustness of the
FIGARCH model and importance of the long memory volatility
parameter on relatively short spans of high frequency data, strongly
suggests that the long memory property is an intrinsic feature of the
system rather than being dueto exogenous shockswhichleadtoregime
shifts.

The plan of therest of this paper is asfollows; section 2 discusses
theapplication of thelong memory volatility, FIGARCH model todaily
and lower frequency data. Thismodel isfound to be econometrically
superior to regular stable GARCH models. The FIGARCH model for
thedaily dataisalsoimportant in constructing thefiltering procedureon
the 30 minute data. Section 3 discussesthe basic properties of the high
frequency data and the presence of long memory and intra day
periodicity inthe autocorrel ation functionsof the squared and absolute
returns. The application of the Flexible Fourier Form (FFF) filter to
remove deterministic intra-day periodicity is then discussed. The
estimatesof MA (1)-FIGARCH(1,6,0) mode sfor 30 minutereturns, one
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hour and up to eight hour returns are presented. The estimates of the
long memory volatility parameters are consistent with returns being
generated by a self similar process. Section 4 of the paper then
describes tests for non linearity, which tend to confirm the
appropriatenessof thefiltering procedureand theuseof the FIGARCH
approach. Section 5 provides a brief conclusion.

[1. Analysis of Low Frequency Daily Returns

Thissection is concerned with the analysis of daily returnsfrom 1979
through 1998 and the estimation of aFl GARCH model to describedaily
volatility. Themode for daily returns providesaninteresting comparison
with the modelsfor high frequency data and throws some light on the
possible self similarity of DM-$ returns. Also, the model for the daily
volatility processisrequiredtofilter theraw 30 minutereturnsto remove
thestrongintraday periodicity. Theset of daily DM-$ spot returnsused
inthisstudy were provided by the Federal Reserve Bank of Cleveland
for the sample period of March 14, 1979 through December 31, 1998,
which correspond to the origin of the EMS (European Monetary
System), and therelaxation of capital controls. Excludingweekendsand
holidays, this realizes a sample of 4,989 daily observations. The
autocorrelation function of the daily returns, squared returns and
absolute returns are plotted in figure 1. Analogously to the 30 minute
data, the autocorrelations of the squared returns and absolute returns
exhibitthefamiliar dow, persistent decay; albeit without thestrongintra
day periodicity. The model that is postulated to describe the returns
processis then,

R =100AIn(S)=¢, +6¢_,, @)
£ =20, 2
ol =w+ ot +H-A -A-g)@-L)YHE,

where § is the daily DM-$ spot exchange rate, z isi.i.d.(0,1) and



Multinational Finance Journal

o1o-
00—
6O - & &
oot 06 0z o 05 os or oc oz o o
00—
00
a0
g Jeio
g oo
sudnjey Ajleg 83n|osqgy JO SUCI3e|8ddodo3ny (9]
aro-
00—
6oy . . e s 2
oot 06 0z o 05 os or oc oz o o
00—
o0
a0
Y
g loo
sudnjed Ajleq padenbs 4o suoije|addosojny (9]
aro-
00—
00—
voro-
o T T TN T T T, T T T T T T T T T T T TN T T T T T AT T T T T T T T T T T T AN T T T T T T T T o T T 200~
og o0 o o . o o N o o fo
//A\ /\/\ 000
“““““““““““““““““““““““““““““““““““““ -0 - ¥00
g Jeoo
2 Jeoo
g loo

sudnjay A|leQ 4O SUCI3R|8JJd0003NYy (€]

250

swnyay A[re Jjo sweifoauo) [ 2rndrg



High Frequency Deutsche Mark-US Dollar Returns 251

returnsarespecifiedtofollow an MA (1) process, whiletheconditional
variance process ¢%, in eguation 3, is represented by a FIGARCH
(Fractionally Integrated Generalized AutoRegressive Conditional
Heteroskedastic) process, as developed by Baillie et al. (1996). The
above FIGARCH(1,5,1) process is sufficiently general that it can
generate very slow hyperbolic rate of decay in the autocorrel ations of
squared returns. When ¢ = 0, p = q = 1, then equation 3 reducesto the
standard GARCH(1,1) model; and when ¢ = p=q= 1, then equation 3
becomesthelntegrated GARCH, or IGARCH(1,1) model, andimplies
complete persistence of the conditional varianceto ashock in squared
returns. The FIGARCH process has impul se response weights, ¢% =
ol(1 - B) + A(L)e?%, where A, ~ k%, which is essentially the long
memory property, or "Hurst effect” of hyperbolic decay. Theattraction
of the FIGARCH processisthat for 0< ¢ < 1, itissufficiently flexible
toalow for intermediate ranges of persistence. Analogousbehaviorin
theconditional mean of exchangerates hasbeen considered by Cheung
(1993). The simpler FIGARCH(1,5,0) process is of the form,

o =w+ fo, +i- A - -L)He.

Theequations 1 through 3 areestimated by using non-linear optimization
procedures to maximize the Gaussian log likelihood function,

log(d) =~ (T/2)In(277) —(J/Z)t; An(?)+£0°H @

with respect to thevector of parametersdenoted by 4. Sincemost return
series are not well described by the conditional normal density in (4),
subsequent inference is consequently based on the Quasi Maximum
Likelihood Estimation (QMLE) techniqueof Bollerdev and Wooldridge
(1992), where

T2 (éT _90) 5 N{O,A(t90)‘l B(QO)A(QJ)_J} ,

and A(.) and B(.) represent the Hessian and outer product gradient
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respectively; éT representsthe estimates based on T observations, and

6, denotes the true parameter values.

Resultsof the estimated model sfor returnsevery day through seven
daysof temporal aggregation arepresentedintable 1. Hencethereturns
are computed every k days, wherek = 1, 2,....7. The estimate of the
long memory parameter, ¢, for daily datais.38. Thisestimateis very
close to a semi parametric estimate of the long memory parameter
obtained for the absol utevaluesof daily DM-$returnsby Andersenand
Bollerslev (1997b). Various tests for specification of the daily model
were performed.! In particular, a robust Wald test of a stationary
GARCH(1,1) modd under thenull hypothesisversusaFl GARCH(1,5,1)
model under thealternative hypothesishasanumerical value of 25.37,
which shows a clear regjection of the null when compared with the
critical valuesof achi squared distribution with onedegree of freedom.
Hencethereisstrong support for the hyperbolic decay and persistence
as opposed to the conventional exponential decay associated with the
stable GARCH(1,1) model. A sequenceof diagnostic portmanteau tests
onthestandardized residual sand squared standardized residual sfailed
to detect any need to further complicate the model .2

Table1alsoshowsthat theestimatesof ¢ arestatistically significant
at the .05 percentilefor one through to seven days. In arecent study of
ten years of high frequency DM-$ and Y en-$ returns, Andersen et al.
(2000) have constructed model freemeasuresof volatility for different
temporal aggregations and conclude in favor of significant volatility

1. The sample period for the daily returns model includes some periods of financial
market crisis, such as the equity market meltdown of October 19, 1987 and the EMS crisis
of September, 1992. Consistent with other studies, we regard these episodes as being part
of the same generating process, rather than signalling a shift to a new regime. For this
reason, we resist including dummy variables or any other mechanism of inducing a "better
fit" to the sample period.

2. Tests of model diagnostics are performed by the application of the Box-Pierce
portmanteau statistic on the standardized residuals. The standard portmanteau test statistic
Qn =T m rjz, where ; is the j-th order sample autocorrelation from the residuals is known
to have an asymptotic chi squared distribution with m—k degrees ofreedom, where k is the
number of parameters estimated in the conditional mean. Similar degrees of freedom
adjustment are used for the portmanteau test statistic based on the sguared standardized
residuals when testing for omitted ARCH effects. This adjustment is in the spirit of the
suggestions by Diebold (1988) and others.



High Frequency Deutsche Mark-US Dollar Returns 253

TABLE 1. Estimated MA(1)-FIGARCH (p, 8, g) Models for Daily Returns

K 1 2 3 4 5 6 7
m 0028 —0026 —0006 0116 0104 0671 —.0040
(0089)  (0188)  (.0303)  (.0411) (0484)  (0628)  (.0775)
6 0126 0074 0475 —0005 0791 .0993 1256
(0150)  (0206)  (.0264)  (.0270) (0313)  (.0367)  (.0403)
P 03826 3475 2665 2907 2395 2370 2323
(0760)  (0916)  (0753)  (.0839) (0740)  (.0750)  (.0841)
© 0207 0865 1944 2309 3962 4831 5865
(0088)  (0311) (0811  (.1010) (1826)  (2302)  (.2789)
8 5803 2672 2106 2352 1503 1544 1341
(0833  (0981)  (0792)  (.0863) (0794)  (.0776)  (.0808)
p 2043 - - - - - -
(0580) - - - - - -
In(L) -4,968.454 -3,388.357 -2,606.957 -2,162.524 —1,820.959 —1,598.865 -1,415.321
Tk 4989 2494 1,663 1,247 997 831 712
Skewness  —.142 -.082 -0.021 0.030 -0.051 027 -.039
Kurtosis 4496 4441 4102 4.429 3.766 3.376 3.668
Q(20) 35209 33710 24.705 23.157 15.653 10.432 23.672
Q¥20) 14380  14.792 14.642 17.145 20.664 17.621 15.917

Note: Thedaily seriesisthe DM/$ spot exchange returns and is from March 14, 1979
through December 31, 1998; a total of T = 4,989 observations. The other series are
observed every k days and contain T/k observations. QMLE asymptotic standard errors are
in parentheses below corresponding parameter estimates. The quantity In(L) is the value of
the maximized log likelihood. The sample skewness and kurtosis refer to the standardized
residuals. The Q(20) and Q*(20) statistics are the Ljung-Box test statistics for 20 degrees of
freedom to test for seria correlation in the standardized residuals and squared standardized
residuals.

R=100x 5 BN(S)-In(S.)8 4+ afes.
i=(t=T)k tk
g = &0, where ¢ isi.i.d (0,1) process,

ol =w+ o, +H- A -(L-gL)(L -L)HE for t=1,.., Tk andk=1...7.

clustering, i.e. ARCH effects, for monthly data. Their finding contrasts
with previousstudiesby Diebold (1988), Baillieand Bollerslev (1989)
and Christoffersen and Diebold (1998), who tended tofind that monthly
exchangerate returnswere closeto being Gaussian and independently
distributed. However, asnoted by Andersen et al. (2000), their measure
of integrated volatility shouldremain highly serially correlated evenata
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monthly level. The results reported in table 1 are consistent with the
notion of self similar returns process with the same long memory
volatility parameter, ¢, up to seven days. Although the estimated ¢
parameter varies from .38 to .23 the range of valuesiswell within the
two robust standard error bands.®

[11. Analysis of High Frequency Returns

Thissectionisconcerned with the set of 30 minute DM-$ spot exchange
rate data provided by Olsen & Associates of Zurich, in which Reuter
FXFX guotesaretaken every 30 minutesfor thecomplete calendar year
of 1996. Thesampleperiodis00:30GMT, January 1, 1996 through 00:00
GMT, January 1, 1997. Each quotation consistsof abid and an ask price
andisrecordedintimeto the nearest second. Following the procedures
of Miller et al. (1990) and Dacorognaet al. (1993), the spot exchange
ratefor each 30 minuteinterval isdetermined asthelinearly interpol ated
average between the preceding and thefollowing quotes. Hencethe 30
minute return seriesis defined asthe difference between the midpoint
of thelogarithmic bid and ask rates. For example, if at time0:30:00, the
preceding bid-ask pricepairis1.4334-1.4341, and thefollowing quoteis
1.4330-1.4335, then the interpolated exchange rate (S,) at 0:30:00
would be
S, = exp{ (1/2)x[In(1.4334)+In(1.4341)]
(6)
+ (1/2)x[In(1.4330)+In(1.4335)]} .

Then the n-th 30 minute spot returnfor day tis, R , = In(§ )-n(S . -.)-
It has becomefairly standard in this literature to remove atypical data
associ ated with slower trading patterns during weekends. Hencereturns
from Friday 21:00 GMT through Sunday 20:30 GMT are excluded.
However, returnsfor holidaysoccurring during thesampleareretained
inorder to preservethe number of returnsassociated with oneweek. In
particular, theeventual sampleusedin subsequent analysiscontains 262
trading days, eachwith 48 interval sof 30 minuteduration; whichrealizes

3. Drost and Nijman (1993) have provided a theoretical treatment of the effect of
temporal aggregation of an underlying high frequency GARCH(1,1) process. As yet no
corresponding results exist for the FIGARCH process.



High Frequency Deutsche Mark-US Dollar Returns 255

atotal of 12,576 observations for the DM-$ returns for the 262 days.

Figure 2 plots the first 240 autocorrelation coefficients for the
returns, squared returnsand absol utereturns of the unadjusted (raw) 30
minute DM-$ exchange rates for 1996. The usua T2 asymptotic
standard errorsfor the sample autocorrel ationsare not strictly valid for
aprocess with ARCH effects and are no more than useful guidelines.
As usua there is a small, negative but very significant first order
autocorrelation in returns, which may be due to the non-synchronous
trading phenomenon,* while higher order autocorrelations are not
sgnificant at conventional levels. However, theautocorre ation functions
of the squared and absolute returns exhibit a pronounced U shape
pattern, associ ated with substantial intraday periodicity.® Similarly tothe
findingsof Granger and Ding (1996), thispatternisparticularly strongin
absolutereturns; andthegeneral patternisconsistent with the studiesof
Wasserfalen (1989), Mliller eta. (1990), Baillieand Bollerdlev (1991),
Dacorogna et al. (1993) and Andersen and Bollerslev (1998). The
pattern is generally attributed to being due to the opening of the
European, Asian and North American markets superimposed on each
other. A further representation of thisphenomenonisprovided by figure
3, which shows the absolute 30 minute returns for each of the 48
intervals, averaged over al the days in the year. The highest average
absolutereturnsoccur between periods 26 and 34, which correspond to
1:00pm and 5:00pm GMT.

Inorder toremovethestrongintraday periodicity, thisstudy follows
asimilar approach as Andersen and Bollerslev (1998), and uses atwo
step estimation method, whereby the intra day periodicity is first
removed by applying Gallant's (1981, 1982) FFF approach. Inparticular,

R.=E(R,)*(0:8.2,.N"), (7)

where E(R, ,) istheunconditional mean of returns, o, isthe conditional

4. The small, but significant first order autocorrelation in high frequency data has also
been noted by Andersen and Bollerslev (1997a), Goodhart and Figliuoli (1992), Goodhart
and O'Hara (1997) and Zhou (1996).

5. Similar U-shaped patterns are found in the equity markets, see Harris (1986), Wood
et al.(1985), Chang et al.(1995) and Andersen and Bollerslev (1997a).
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Ficure 3.— Averages of absolute 30 minutereturns. Thevertical axis
showsthe absolute DM-$ returns averaged over the T =262 days. The
horizontal axis gives the period within the day.

varianceof daily returns, s, ,isadeterministic functiontorepresentintra
day seasonality, z, ,isani.i.d.(0,1) process, whichisindependent of the
daily volatility processo, and Nisthenumber of returnintervalsper day.
From equation 7,

~In(a?) +In(N) =In(s%,) +In(2,).

X, =2In|R,~E(R,)

where the observed variable x,,, is then regressed on a non linear
function of thetimeinterval n, and daily volatility o,; i.e.

x.,=f(6;t,n)+u

t,n

where

u,=In(z,)-EAn(Z. B,
isani.i.d.(0,1) process and the functional form of X, is,

f (6;t,n)= 1y + 40/ N, + 1,0 /N, + A1, (t,n) + Z 6D, (t,n =k)
k=13
©
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+ Z ., cos(p2m/N)+ g sin(p2 m/N)g,

where
N, =N ;i =(N+1)/2,

N, =N"Y i?=(N +1)(2N +1)/6,

and | (t,n) isanindicator variablewhich representsthe occurrence of an
event k on day t at interval n. These events include U.S. economic
announcementsof retail sales, trade balances, unemployment, and the
PPI and CPI priceindices. Theindicator functionisequal to unity when
anannouncement of theabove occursand iszero otherwise. After some
experimentation it was also decided to include a lagged indicator
variable, D,, whichisunity for thetwo hoursimmediately following the
event and iszero otherwise. Thedatesand timesfor the U.S. economic
announcements were obtained from the section "Week Ahead" of the
weekly magazine, Business Week. On treating the variable X, , as the
dependent variabl e, the parametersin the equation 8 were estimated by
OLS. Theintraday seasonality for interval n, onday tisthen estimated
as

. - T.RBxp(f../2H |
tﬂgN)n;exp(fm/z)

The 30 minute returns are then filtered by the estimated intra day
seasonality series, s, ,, to generatethefiltered returns, which aredefined
as

9)

Iit,n = Rtn/stn (10)

Figure4 presentsthe autocorrel ations of the raw, squared and absolute
filtered 30 minute DM-$returns. It isclear that the autocorrel ations of
thesquared and absol utefiltered returnshave dramatically reduced intra
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day periodicity, whilea so exhibiting extreme persi stence associated with
the feature of long memory.

A generalization of the daily model, which is also based on the
continuoudly compounded returnsfor sampling frequency k, includesan
MA(1)-FIGARCH(1,0,1) formulation,

Rt,n = ,U +£t,n +0£t,n—l' (11)

gt,n = Zt,nat,n 4 (12)

ol =w+ pot,, +H-A--4 ) -LYHE, (13

wherez ,isani.i.d.(0,1) process, and wherethetwo timeindices aret
=1,..262 days, and n=1,.. K, intraday periods, so that K = 48/k, for
k=1,2,3,4,6,8,12and 16. Resultsfor estimating theabove model for
thesix different frequenciesover k, withintheday are presentedintable
2. Theestimated long memory volatility parameter, ¢, isestimated within
therangeof .14to .24 for the 30 minute, one hour, 90 minutes, two hour,
threehour, four hour, six hour and eight hour sampling frequencies. The
estimate of ¢ is highly significant for all the returns series.

In many previous studiesthe GARCH(1,1) model hasbeen used to
represent the volatility process. Theresultsin table 2 indicate that the
FIGARCH mode isgenerally the more appropriate specification. For
the 30 minute return series, a robust Wald test of the stationary
GARCH(1,1) null hypothesis versus a FIGARCH(1,6,1) alternative
hypothesis has a numerical value of 63.00, which provides an
overwhel ming rejection of the GARCH(1,1) formulation. Hence, aswith
thedaily data, therethetestsimply strong support for thelong memory
FIGARCH model. Testsfor mis-specification do not reveal any obvious
deficiencieswiththemodel, andin particul ar thestandardized residual s
from the MA(1)-FIGARCH(1,56,0) model for the filtered 30 minute
returns appear to be uncorrelated. The estimates of the long memory
parameter arerelatively stable across the high frequency datafrom 30
minutes to 8 hours; and in this sense are comparable with the semi
parametric estimatesof long memory from absol utereturns obtained by
Andersen and Bollerslev (1998).

Aninterestingimplication of therobustness of theFIGARCH model
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TABLE 2. Estimated MA(1)-FIGARCH(p,6,q) Model for Filtered 30-minute

Returns
30min. 1 hour 1.5 hours 2 hours 3hours  4hours 6 hours 8 hours

k 1 2 3 4 6 8 12 16
u .0006 .0014 .0022 .00037 .0048 .0065 .0104 .0106

(.0005) (.0009) (.0014) (.0019) (.0030) (.0040)  (.0059)  (.0079)
2 —-.0936 —.0494 .0016 .0052 —-.0081 .0341 0143  -0314

(.0113) (.00151) (.0196) (.0235) (.0315)  (.0291)  (.0415) (.0367)
5 .2049 1914 .2031 1504 1824 1416 .2453 .2396

(.0257) (.0413) (.0473) (.0437) (.0811) (.0522)  (.1395)  (.1910)
w .0009 .00019 .0025 .00046 .0063 .0098 .0093 .0046

(.0001) (.0004) (.0007) (.0014) (.0022)  (.0034)  (.0043)  (.0050)
B .0354 .0294 .0755 .0058 .1028 .0428 .0787 7231

(.0314) (.0526) (.0521) (.0715) (.1084)  (.0714)  (.1419)  (.1923)
@ - - - - - - - .6017

- - - - - - - (.2422)
In(L) 17,622.853 6,788.983 3,714.431 2,353.932 1,081.756 618.046 164.361 10.751
T 12,576 6,288 4,192 3,144 2,096 1,572 1,048 786
Skewness -.183 .047 -.165 152 -922 .028 —474 -.352
Kurtosis 9.236 8.321 7.731 8.037 18.774 6.761 7.732 6.533
Q(50) 67.984 72.163 66.752 70.820 59.907 69.127 38.847 49.513
Q(50) 27.134 61.351 24.737 49.173 24.714 69.154 35.283 31.193

Note: The 30-minute spot exchange returns are from 00:30 GMT, January 1, 1996
through 00:00 GMT, January 1, 1997 for a tota of 262 days. The total number of
observations is T = 262.k, for k=1, 2, 3, 4, 6, 8,12, and 16. The intraday periodicity (s;)
is estimated by the FFF(Flexible Fourier Form) method. QMLE asymptotic standard
errors are in parentheses below corresponding parameter estimates. The quantity In(L)
is the value of the maximized log likelihood. The sample skewness and kurtosis refer to
the standardized residuals. The Q(50) and Q?(50) dtatistics are the Ljung-Box test
statistics for 50 degrees of freedom to test for seria correlation in the standardized
residuals and squared standardized residuals.

R :100)( ; B?l,n/é,i—la::u +£l,nagl,n—1‘
i=(n-TJK+1,nk
& =¢0, where 7 isi.i.d (0,1) process,
oG, =w+ B, +H- AL -(L-gL)(L-LYHE,.

fort=1,..,262 days, and n=1,...., K, where K=48/k and k=1,...,8.

and importance of the long memory volatility parameter on relatively
short spans of high frequency data, strongly suggests that the long
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memory property isanintrinsic feature of the system rather than being
due to exogenous shocks which lead to regime shifts.

V. Nonlinear Dependenciesin High Frequency Returns

The above model has used the FFF adjustment to remove intra day
periodicity and has used the MA(1)-FIGARCH(1,6,0) process to
represent the high frequency returns. However, it is still possible that
higher order non linearitiesare present inthe high frequency returnsand
arenot captured by themodel. Thispossibility isenhanced by theuse of
the FFF procedure being applied to the raw returns. Hence it is of
interest to apply further testsfor omitted nonlinear effects. Oneway of
searchingfor temporal dependenceintimeseriesdataistheestimation
of thecorrelation dimension, whichisbased on the notion of correlation
integral. For a given time series {x(t): t = 1,....T} of D dimensional
vectors, the so-called correlation integral C(e) is defined as

C(e)=timE/T (T -DEY 1, (%.%,),

wherel (x,y) isanindicator function whichisequal to oneif | |x-y|| <
¢, and is zero otherwise, and where ||.|| denotes the sup-norm.
Intuitively, the correlation integral C(¢) measures the fractions of the
pairs of points {x(t)} that are within an ¢ distance from each other.
Grassberger and Procaccia (1983) definethe correlation dimension of
the time series {x(t)} of an embedding dimension M as,

D" =lim An{C (e} /in(e)E

The correlation dimension technique produces estimates and uses
graphica analysis, whichtypically requiresvery largedatasets, that are
more common in physics, as opposed to economics and finance. The
technique has been implemented on economic data by Ramsey et al.
(1990) and others. Asnoted by Hsieh (1989) and Ramsey et al. (1990),
thecorrelation dimension estimated from small samplesizescanbevery
misleading, and hasadownwardsbias, thusincreasing the probability of
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TABLE 3. Testsfor Non Linearity in Modéd’s Residuals

A. Correlation Dimensions

M c(M)

0.69
2.07
2.99
3.75
4.30
4.82
5.19
5.48
5.67
5.80

© 00 ~NO O WNBE

=
o

B. BDS Sttistics

e 25 5 75 1 1.25
M=2 —.46 -12 —67 -07 12
M=3 —51 —04 -07 .03 30
M =4 -12 -13 -25 -10 19
M=5 1.39 -13 -36 -25 -03
M=6 3.79 -07 -31 -30 -15
M=7 7.72 -27 -35 -31 -17
M=8 23.30 -27 —44 -35 -20
M=9 63.81 -.08 —44 -39 —24
M=10 19827 54 —47 —43 -34

Note: The correlation dimensions are for the residuals from the MA(1) -
FIGARCH(1,6,0) model for the filtered 30 minute DM-US-$ returns. The M symbol denotes
the embedding dimension and C(M) represents the corresponding correlation dimension.
The above BDS statistics are for an embedding dimension M with distance of ¢; and are for
the sameresiduals asin panel A.

erroneously concludinginfavor of findinglow-dimensional chaos. Panel
A of table 3reportsthe correlation dimension estimatesfor theresidual s
from the model given by equations 11 through 13 for the 30 minute
returns. Following Liu et al. (1992) and Cecen and Erka (1996),
concerning theinterpretation of these estimates, it isclear that thereis
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little convergence in dimension estimates, and they do not appear to
indicate any strong low dimensional deterministic dependence in the
residuals. A further test for nonlinear dependence is the BDS test, of
Brock et al. (1996). Thistest attempts to distinguish between ani.i.d.
series and a serieswith deterministic or stochastic dependence. Given
atimeseriesx, fort=1,... Twhichisani.i.d. sequence, it can be shown
that

C.(e)=Cule)",

whereC,(¢) isthecorrelationintegral . By estimating C,(¢) and C,(¢) by
the sample values C,(¢) and C,(¢), the BDS test statistic can be
written as,

TY? gim (e)-C.; (5)"%

0

B, (€)=

: (14)

where g,+(¢) is an estimate of the asymptotic standard error of the
numerator inequation 14. Thenunder thei.i.d. null hypothesis, Brock et

al. (1996) provethat B, ; ~ N (0,1) . Theembeddingdimension, M, was

chosento beintherangeof 2through 10, whiles wasfixedintherange
of .25s through 1.25s, where s is the standard deviation of the data.
Panel B of table 3 reportsthe BDStest resultsfor theresidualsfromthe
estimated model in equations 11 through 13 from the 30 minutefiltered
returns. Except for the value of ¢ = .25 and M > 6, the test statistics
consistently fail torgject thei.i.d. null for theresiduals. Overal thereis
no evidence from these tests for non linearity to indicate model mis-
specification. Hence there is no reason to doubt that the FFF filtering
procedure and the estimated MA(1)-FIGARCH(1,6,0) model has
adequately captured thedynamics, bothlinear and nonlinear, of thehigh
frequency exchange rate returns.

V. Conclusion

This paper has considered one year of high frequency DM-$ returns,
and alsotwenty yearsof daily and lower frequency data. The 30 minute
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returnsserieswerefiltered by the Flexible Fourier Form (FFF) method
toremoveintraday periodicity. Thelong memory volatility processes,
FIGARCH, isfound to provide agood representation of both the high
frequency and the daily DM-$ returnsdata. Two testsfor non linearity
are presented to further test the appropriateness of the FFF filtering
procedure and also the imposition of the MA-FIGARCH maodel. The
residuals from the model are found to be free of any significant non
linear effects, and the FIGARCH model appearsto successfully account
for thedynamics of thereturn series. Interestingly, the estimates of the
long memory volatility parameter in the FIGARCH models are very
closeacrosstime aggregations, suggesting that long memory volatility is
an intrinsic feature of the system.
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