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The underlying stochastic processes that drive returns in several emerging
bond and stock markets are investigated using the pure diffusion, the jump
diffusion, the ARCH pure diffusion, and the ARCH jump diffusion models.
The results indicate that jump diffusion models fit the data better than pure
diffusion models.  Possible sources and linkages of information surprises in
emerging stock and bond markets are also investigated.  Bond and stock returns
of the same country exhibit simultaneous jumps, indicating a possible linkage
of the two markets.  U.S. equity returns respond to jumps in emerging bond
markets but not to jumps in emerging stock markets (JEL C51, F36, G12, G14).
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I. Introduction

Identifying the probability distribution that characterizes the return
series of a financial asset has been an important task in empirical
finance.  It is becoming even more important with the increasing
popularity of new risk measures such as Value at Risk (VAR).  VAR is
defined as the largest loss in portfolio value due to changes in market
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1.  For a discussion of how different distribution assumptions affect the VAR, see
Duffie and Pan (1997). 

2. An alternative way to measure the risk of extreme events is to look at the tails of the
distribution; e.g., Embrechts, Resnick, and Samorodnitsky (1998) and Booth et al. (1997). 

3. See Merton (1990) for an example of asset allocation within the jump-diffusion
framework.

4. For example, capitalization in emerging market sovereign debt has grown over the
period 1989 to 1993 from 50 billion to 1.2 trillion U.S. dollars.  The volume of trade in
sovereign debt issued by developing countries is currently 2.2 trillion U.S. dollars.

5. The mean and variance of returns in emerging capital markets are higher than those
of developed markets; e.g., Harvey (1995) and Claessens and Gooptu (1993).

prices over a given period of time within a certain probability.  VAR
computations based on incorrect distributional assumptions do not
provide an accurate picture of a portfolio’s risk exposure, and may even
induce faulty risk management decisions.1  Therefore, the first step in
computing an accurate VAR measure is to find the distribution that
closely approximates the dynamics of security prices/returns.2  This
article, investigates the distributional characteristics of bond and stock
returns in rapidly growing emerging markets.

Another reason to understand return distributions in these markets
is their implications for optimal asset allocation.  The mean-variance
criterion is commonly used for international asset allocation.  This
criterion relies on the assumption that investors have a quadratic utility
function or asset returns are normally distributed.  The drawbacks of
assuming a quadratic utility function for investors are well established.
Moreover, the empirical results presented in this article provide strong
evidence against normality of asset returns.  Thus the optimality of the
mean-variance strategy is in doubt.  Therefore, it is necessary to devise
new asset allocation strategies that account for the distribution of asset
returns.3

Moreover, emerging stock and bond markets have experienced
significant growth in the past several years.4  U.S. companies, mutual
funds, and pension funds have also been increasing their exposure to
these markets.  It is important to understand the dynamics of these
emerging markets in order to provide better guidance to investors on
risk management and portfolio allocation issues.5

Researchers have studied the return dynamics of U.S. markets and
foreign exchange markets in great detail.  It is well known that asset
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6. Most of the early articles on emerging markets employ monthly data, thereby limiting
the scope of questions/issues that can be addressed.  Chahal, Rebello, and Smith (1995) use
daily data for emerging stock and bond markets, but they only analyze the integration of
emerging markets with the U.S.

returns have fatter tails to be successfully fitted by a normal
distribution.  A model that can capture the fatter tail effect is jump
diffusion.  Ball and Torous (1983) are the first to document that jump
diffusion fits several U.S. stocks return series well.  In a subsequent
paper, the authors study the implications of their findings for option
pricing (Ball and Torous [1985]).  Jarrow and Rosenfeld (1984)
investigate the implications of the jump diffusion model for capital asset
pricing.  Kim, Oh, and Brooks (1994) apply the jump diffusion model
to individual U.S. stock prices and market indices.  They find significant
jumps in both return series.

A well-known characteristic of asset return dynamics is volatility
clustering or conditional heteroskedasticity.  ARCH (Autoregressive
Conditional Heteroskedasticity) type models capture this effect well; see
Bollerslev, Chou, and Kroner (1992) for a detailed review.  A number
of researchers find that a combination of ARCH and jump diffusion
models provides a better modeling of return series.  This is documented
for the U.S. bond market by Das (1995) and for foreign exchange
markets by Jorion (1988) and Johnson and Schneeweis (1994).

This article extends the investigation of the distribution of daily
bond and stock returns in emerging markets using the pure diffusion
(PD), jump diffusion (JD), ARCH pure diffusion (APD), and ARCH
jump diffusion models (AJD).6  Various tests performed show that jump
diffusion models fit the data better than pure diffusion models.  These
findings have serious implications in investment analysis and risk
management of emerging markets.  Because the normal distribution is
not adequate to describe return dynamics of emerging markets, one
needs to use jump diffusion as the underlying distribution to compare
risk and reward.  Specifically, VAR measures computed from a jump
diffusion are generally higher than those computed from a pure normal
distribution with equal total variance (Duffie and Pan [1997]).  In
addition, jump diffusion admits far more extreme values and thus
requires a higher capital reserve to prepare for these extreme events.

Finally, the article investigates the possible sources of information
surprises in emerging stock and bond markets.  None of the studies
mentioned above, with the exception of Das (1995), investigates this
aspect of return dynamics.  While Das (1995) focuses solely on the U.S.
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Treasury market, this article makes the connection between the bond
market and the stock market of a home country.  The results show that
bond and stock returns of an emerging country are closely linked, as
there exist simultaneous jumps in both return series.  The returns of the
U.S. equity market are connected with jumps in emerging bond markets
but not in emerging stock markets.  This finding is helpful in identifying
risk exposure.  

The bonds used in this study are highly liquid assets and popular
trading instruments for investors who want exposure to emerging
markets.  The above results indicate that investors holding these bonds
are exposed to not only risks in emerging markets but also risks in the
U.S. equity market.  Hence investors who seek exposure to only
emerging markets have two alternatives: (1) a position in emerging bond
markets plus a position to hedge away exposure to the U.S. equity
market, or (2) a position in emerging stock markets.

The rest of the article is organized as follows.  Section II describes
the data and presents the statistical methodology.  The empirical
assessment of jump diffusion models and sources of jump risk is
presented in section III.  Section IV presents the conclusions.

II.  Data and Statistical Methodology

A.  Data Description

The data used in this study include bond and stock market index returns
for six emerging economies (countries), the U.S., and a regional Latin
American Equity index.  The six countries are Brazil, Mexico, Morocco,
Nigeria, Panama, Poland, and Venezuela. The data are collected at daily
intervals and cover the period March 2, 1992 to May 10, 1994.  

The bond data, obtained from First National Bank of Chicago’s
Emerging Markets Division, include daily prices for eleven bonds
issued by the aforementioned countries.  These prices are the average
of bid and ask quotes as reported by Reuters at 4 p.m. Eastern Standard
Time.  Six of the bonds are Brady bonds.  That is, they are denominated
in U.S. dollars and their principal, and in many case their interest, is
collateralized by U.S. Treasury zero-coupon bonds.  The remaining five
bonds are also dollar denominated, but they differ from Brady bonds in
that neither principal nor interest is backed by specific collateral.  These
bonds are traded in New York and London.  Because of the market
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7. Holders of bonds issued by Poland and Panama did not receive interest payments
over the sample period, thus AIt = 0 for these bonds.

8. Stock data for the six emerging economies and the LAMR were obtained from the
Morgan Stanley Capital International Emerging Markets Database (MSCI). The dividend
adjustment used by MSCI is as follows: (1) In the period between ex date and the date of
dividend reinvestment, a dividend reinvestment is a component of the index return. (2)
Dividends are deemed received on the payment date. (3) To determine the payment date, a
fixed time lag is assumed to exist between the ex date and the payment date.  This time lag
varies by country and is determined in accordance with general practice within that market.
(4) Reinvestment of dividends occurs at the end of the month in which the payment date falls.

location, collateral characteristics, and dollar-denomination, these
eleven bonds are the most liquid emerging market instruments.
Appendix A provides additional information on the eleven bonds.

Continuously-compounded daily returns are computed from the bond
prices and accrued interest using formula7
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where Xt is the return for trading day t, “ln” is the natural logarithm, Pt

is the closing price at time t, and AIt, is the accrued interest during
period t–1 to t.  

The stock data include daily values for a U.S. equity index (USR),
a regional Latin American equity index (LAMR), and six market equity
indices; one for each of the aforementioned countries.  The USR is a
value-weighted index of all equity securities on the CRSP tapes and
accounts for dividends.  The LAMR is a value weighted stock return
index (by market capitalization) of seven Latin American countries,
including Argentina, Brazil, Mexico, Peru, and Venezuela.  The
remaining six indices are value-weighted indices of actively traded
stocks and include dividends.  The daily values of all seven indices are
converted into U.S. dollars using the Reuter’s exchange rate at 3 p.m.
Eastern Standard Time.8  Daily continuously-compounded (U.S. dollar)
returns are calculated using the formula
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where Pt is the price of the stock index at time t.  Note that the prices
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9. The skewed generalized t (GT) distribution, developed by Theodossiou (1998), can
also be used to model the fat tails and skewness in financial data.

used to compute these returns are the official closing prices in the
dominant stock exchanges in each country.

Additional U.S. data includes the returns on the Federal Funds Rate
(FFR), which were obtained from the Federal Reserve Bank of Atlanta.

B.  Statistical Methodology

Table 1 presents various distribution statistics of daily returns for the
bond and equity indices in the six emerging markets (countries), the
Latin American index and the U.S.  These statistics help to motivate the
jump diffusion framework for modeling returns.  One common feature
of all bond and stock series examined is the large excess kurtosis, which
is statistically significant at the five percent level.  Note that excess
kurtosis is higher for bond returns than for stock returns.

Another common feature is that there are more extreme values than
could be justified by a normal distribution of the same mean and
variance.  For example, the bond Brazil Exit has sixteen daily returns
that are at least three standard deviations away from the mean and four
returns that are at least five standard deviations away.  These two
numbers represent 2.95% and .74% of all the observations.  However,
under the assumption that the return series is normally distributed, the
probability of having one draw that is three standard deviations away is
.27% and the probability of a draw five deviations away is .000057%.
Clearly, the return series has too many extreme values to be generated
by a normal distribution.

The fat tails in the data can be modeled using a stochastic volatility
process, such as a ARCH or a jump diffusion process.9  It is well
recognized that conditional volatility models capture the volatility
clustering property of the data well, but they do not fully account for the
fat-tailed properties of the data; e.g., Baillie and Bollerslev (1989) for
a study of the U.S. financial markets.  The jump diffusion framework,
on the other hand, models the data as a mixture of routine movements
and random bursts of jumps. This provides flexibility in accommodating
extreme values in the data and thus captures the fat-tailed properties.
However, since conditional autoregressive heteroskedasticity (volatility)
is not modeled in the pure jump diffusion setting, the volatility
clustering effect is not captured by this model.  Overall, one may expect
that a combination of jump diffusion and ARCH models provides the
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best fit to the data series.
According to table 1, the data exhibit significant skewness.  All the

data series, with the exception of equity indices for Mexico and
Venezuela, exhibit significant skewness at the five percent level.
ARCH models allow the volatility, or conditional heteroskedasticity, to
vary over time, thus making it easier to match the fourth moment or
kurtosis to the data.  Nevertheless, time-varying conditional volatility
has a limited effect on the third moment or skewness.  Hence ARCH

TABLE 1.  Summary Statistics for Daily Bond and Equity Index Returns

A.  Bond Returns

Bond Nobs Mean Standard Skewness Excess Nobs  Nobs
×10–5 Deviation Kurtosis (>3 se) (>5 se)

Brazil Exit 542 –30.7 .0124 –1.48* 11.31* 16 4
Brazil IDU 383 47.9 .0104 –.62* 4.55* 6 1
Mexico Discount 545 3.3 .0066 –.59* 8.99* 15 1
Mexico Par 545 0.3 .0088 –1.18 8.07* 16 1
Morocco 547 92.7 .0113 –.85* 4.82* 10 1
Nigeria Par 547 12.7 .0144 –.54* 10.09* 15 2
Panama 544 130.9 .0246 –1.52* 14.55* 12 3
Peru CB 522 179.5 .0310 –1.09* 9.38* 10 2
Poland DDRA 547 119.1 .0206 –.68* 6.82* 11 2
Venez. Discount 547 –49.3 .0142 –.42* 4.36* 11 0
Venez. Par 549 –38.4 .0134 –.80* 6.60* 11 2

B.  Equity Returns

Equity Nobs Mean Standard Skewness Excess Nobs  Nobs
Index ×10–5 Deviation Kurtosis (>3 sd) (>5 sd)

USR 550 26.5 .0055 –.40* 2.47* 7 0
LAMR 549 33.4 .0130 –.44* 2.24* 7 1
Argentina 549 –7.5 .0259 –.34* 1.91* 6 0
Brazil 549 38.8 .0315 –.31* 0.68* 4 0
Mexico 549 21.0 .0162 –.059 1.60* 7 0
Peru 340 133.2 .0230 –.49* 2.05* 4 0
Poland 340 534.9 .0377 –.30* 2.13* 3 0
Venezuela 340 –104.6 .0208 0.055 4.33* 5 0

       Note: The columns Nobs ( > 3 sd) and Nobs ( > 5 sd) give the number of returns that are
at least three and five standard deviations from the mean, respectively.  The sample period is
March 2, 1992 to April 8, 1994.  *Statistically significance at the five percent level.  USR is
for U.S. index returns and LAMR is for Latin American Equity Index returns.  All equity
indices are expressed in U.S. dollars and account for dividends.
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10. The estimation method for the jump-diffusion process is based on the Bernoulli
approximation first employed by Ball and Torous (1983) and more recently by Das (1995).
It is well known that the Bernoulli process is a stable approximation of the Poisson process
and converges to it in the limit.  This methodology differs from that employed by Jorion

models cannot fit all kinds of skewness in the data.
On the other hand, jump diffusion models have the advantage of

capturing skewness.  The reason is that jump diffusion processed model
the data as normal fluctuations plus random arrivals of big jumps.  The
sizes of those jumps are also random.  Changing the mean of the jump
size and the arrival probability affects the mean and the skewness of the
distribution.  In general, it is easier to match skewness of the data with
jump diffusion models than with conditional heteroskedasticity models.

Following Jorion (1988) and Das (1995), we estimate different
return specifications using maximum likelihood estimation.  We study
four models, the pure diffusion (PD), the pure diffusion with time-
varying conditional heteroskedasticity (APD), the jump diffusion (JD),
and the jump diffusion with time-varying conditional heteroskedasticity
(AJD).  Note that the first three models are nested within the last model.

The pure diffusion model assumes that returns are normally
distributed with mean k and variance 2, i.e.,

, (1)X t k z t( ) ( )= + σ

where z(t) is an i.i.d. (identically and independently distributed)
standard normal error; i.e., it has mean zero and variance one.  In the
jump diffusion framework, the return process is modeled as

, (2)X t k z t J y( ) ( )= + + ×σ

where z(t) has the same properties as in (1), and J is a Bernoulli random
variable taking the value of one (J = 1) in the case of a jump and the
value of zero (J = 0) otherwise.  The probability of a jump is h, and
consequently the probability of no jump is 1 – h.  The random variable
y is normally distributed with mean µ and variance 2 and it is
stochastically independent of z(t).  The above jump diffusion process
can also be viewed as a mixture of two normal distributions; see
Akgiray and Booth (1987).  Moreover, note, that when h = 0, equation
2 simplifies to equation 1.  In this respect, the pure diffusion process is
nested within the pure jump diffusion process.10   
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(1988), which involves truncation of the infinite summation of the Poisson process.

In the case of the AJD

(3)X t k t z t J y( ) = + ( ) ( ) + ×σ , and

(4)σ 2
0 1

21( ) [ ( ) ] ,t a a X t k= + − −

where 2(t) is the conditional variance of returns specified as a function
of past volatility shocks or a first order ARCH process.  Equation 4
captures time variation in conditional heteroskedasticity which is
responsible for portion of kurtosis in the data.  Note that when 2(t)= 2,
AJD reduces to that of a JD model.  

To further investigate the sources of jumps, the jump variable µ is
specified as a function of contemporaneous (t), one-day lagged and one-
day forward returns from the bond and stock markets in the home and
foreign markets.  Specifically, for the emerging bond series the jump
variable µ is specified as

µ( )t c c FFR c FFR c FFRt t t= + + +− +0 1 2 1 3 1

(5)+ + +− +d HSR d HSR d HSRt t t1 2 1 3 1

+ + +− +e USR e USR e USRt t t1 2 1 3 1,

where FFRt is the Federal Funds Rate, HSRt is the home country stock
index return, and USRt is the U.S. equity stock index return. For the
emerging equity indices, the µ is specified as

µ( )t c c FFR c FFR c FFRt t t= + + +− +0 1 2 1 3 1

(6)+ + +− +d HBR d HBR d HBRt t t1 2 1 3 1

+ + +− +e USR e USR e USRt t t1 2 1 3 1,

where HBRt is the home country bond return and FFRt and USRt are as
defined previously.  The FFRt and USRt variables can be viewed as
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11. Appendix B gives the derivation of the log-likelihood function in (7).

proxies for the risk-free rate and U.S. market risk and the HBRt variable
is used as a proxy for home country risk.  By identifying the factors that
contribute significantly to the jump size, we can study the linkages in
jumps across markets and shed light on the possible sources of jumps.

These PD, JD, APD, and AJD as well as the various specifications
for the jump parameter µ are estimated using the maximum likelihood
estimation method.  The estimation involves maximization of the
following general log-likelihood function

      L
h

t

X t k
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T
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−
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with respect to the parameter vector (space)  = [ k, µ, ã ].11  Note that
PD, JD, and APD are nested within the AJD, and as such their
likelihood functions are special cases of (7).   Specifically, in the case
of PD and APD h = µ =0, in the case of PD and JD 2(t)= 2.  Moreover,
in JD and AJD µ(t) may be specified as constant over-time. 

The comparison between nested models can be accomplished by
using the likelihood ratio (LR) test statistic

LR = –2 × ( LE – LN), (8)

where LE and LN are the values of the log-likelihood functions of the
enlarged and nested models as defined in (7).  The LR statistic follows
a 2 distribution with degrees of freedom equal to the difference in the
number of parameters estimated under the two specifications.  Another
measure to compare the fit of these models is the Schwarz criterion
(Schwarz [1978]), defined as 

(9)SC = − × +2 L X K T( | ) log ,φ

where L(  | X) represents the log-likelihood function of the parameter
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12. A Tuesday effect for several bonds exists.  However, the results are similar to the
ones obtained without day-of-the-week effects; results available upon request.

13. In some cases, the AJD  did not improve upon the fit provided by the jump diffusion
model. The reason is that the former model uses at least one less observation.

vector  given the data X, K is the number of parameters to be
estimated, and T is the number of observations.  The Schwarz criterion
accommodates the tradeoff between better fit and more parameters by
penalizing the model with the larger number of parameters.  The most
probable model is the one with the smallest SC value.  The SC is useful
for comparing non-nested models, such as the JD and APD.

II.  Empirical Results

A.  Comparison of the Four Diffusion Models

Table 2 presents the results for the pure diffusion (PD), jump diffusion
(JD), ARCH pure diffusion (APD), and ARCH jump diffusion (AJD)
models for emerging country bonds.12  Based on the log-likelihood ratio
(LR) test statistic, the AJD model appears to provide the best fit to the
data.  The only exception is the Mexico Discount bond.  These results
are also supported by Schwarz criterion (SC); that is, in all cases the SC
value is the lowest for the AJD models compared to the other three
models.  Moreover, the SC criterion indicates that out of the non-nested
models, the JD model provides a better fit to the data than the APD
model. The latter result implies that time-varying volatility alone cannot
explain the extreme values.

Table 3 presents the results of the four models for emerging market
stock indices and the U.S. value-weighted equity index.  The
improvement of fit is observed when switching from conditional
volatility models to jump diffusion models.  For example, the jump
diffusion model outperforms the pure diffusion model based on both the
log-likelihood ratio tests and the Schwarz criterion.  Between the two
non-nested models, jump diffusion outperforms ARCH diffusion based
on the Schwarz criterion (except for LAMR).  In general, jumps need to
be included in the model of return process to have a better fit.13

Several interesting results can be found for both emerging bond and
stock markets from tables 2 and 3 respectively.  The estimates of
variance ( 2) in the pure diffusion model are higher than those obtained
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180TABLE 2.  Estimation of Jump Diffusion Models Bond Returns

Bond Model k × 103 2 × 103 a0 × 103 a1 µ × 103 2 × 103 h L SC

Brazil PD .479 .109 1,555.94 –3,107.98
IDU (.87)* (24.2)

JD 1.096 .029 –2.040 .261 .302 1,602.54 –3,175.34
(2.50) (5.99) (–1.07)* (5.58) (5.20)

APD .824 .076 .299 1,571.04 –3,124.25
(1.48)* (19.1) (4.48)

AJD 1.420 .027 .233 –4.495 .262 .190 1,611.68 –3,187.71
(3.32) (5.63) (3.61) (–1.64)* (3.58) (3.44)

Brazil PD –.308 .145 2,123.89 –4,235.19
Exit (–.54)* (38.7)

JD .476 .008 –2.156 .375 .363 2,339.97 –4,648.46
(2.51) (9.82) (–1.40)* (12.7) (12.3)

APD .073 .120 .183 2,126.64 –4,234.41
(.14)* (38.9) (5.79)

AJD .343 .001 .179 –1.240 .275 .434 2,342.88 –4,673.18
(3.31) (6.90) (5.61) (–1.03)* (17.0) (14.5)

Mexico PD .0326 .043 2,465.59 –4,918.57
Discount (.11)* (37.9)

JD .3998 .003 –.986 .107 .373 2,640.08 –5,248.65
(3.30) (8.50) (–1.27)* (12.6) (11.8)

APD –.052 .026 .622 2,491.30 –4,963.71
(–.19)* (27.7) (10.0)

AJD .399 .002 .232 –1.444 .101 .308 2,641.46 –5,245.14
(3.45) (6.76) (4.69) (–1.66)* (10.2) (9.33)

(Continued)
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TABLE 2.  (Continued)

Bond Model k × 103 2 × 103 a0 × 103 a1 µ × 103 2 × 103 h  L SC

Mexico Par PD .003 .077 2,307.73 –4,602.86
(.01)* (34.2)

JD 1.044 .011 –4.041 .245 .258 2,473.41 –4,915.31
(5.23) (9.59) (–2.77) (7.71) (8.19)

APD .757 .046 .615 2,336.28 –4,653.67
(2.64) (35.2) (8.44)

AJD .826 .007 .472 –3.557 .277 .155 2,494.85 –4,951.92
(5.04) (7.71) (5.99) (–2.05) (5.49) (6.02)

Morocco PD .927 .128 2,178.51 –4,344.41
(1.81)* (28.8)

JD 1.367 .033 –1.62 .346 .272 2,260.57 –4,489.62
(3.68) (7.89) (–.82)* (5.36) (5.70)

APD 1.151 .083 .368 2,208.74 –4,398.58
(2.33) (23.2) (5.24)

AJD 1.429 .027 .408 –5.08 .370 .137 2,280.60 –4,523.40
(4.27) (7.57) (5.36) (–1.66)* (3.44) (3.75)

Nigeria Par PD .127 .206 2,047.74 –4,082.86
(.20)* (40.0)

JD .978 .030 –2.98 .612 .285 2,195.73 –4,359.94
(2.86) (9.42) (–1.37)* (10.1) (8.60)

APD .716 .147 .424 2,060.98 –4,103.05
(1.30)* (32.0) (8.15)

AJD .946 .016 .340 –3.13 .574 .244 2,206.47 –4,375.14
(3.26) (7.02) (5.19) (–1.28)* (7.37) (7.34)

(Continued)
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Bond Model k × 103 2 × 103 a0 × 103 a1 µ × 103 2 × 103 h  L SC

Panama PD 1.309 .605 1,743.65 –3,474.70
(1.15)* (43.8)

JD –.021 .0001 .873 1.100 .877 2,212.12 –4,392.75
(.00)* (.00)* (.00)* (2.43) (18.1)

APD 2.870 .487 .375 1,735.69 –3,452.50
(2.51) (32.7) (7.14)

AJD –.031 .000 .176 .953 1.179 .656 2,339.09 –4,640.41
(–.37)* (.00) (4.82) (.39)* (19.7) (16.9)

Peru CB PD 1.795 .961 1,552.30 –3,092.08
(1.25)* (36.3)

JD .297 .000 1.074 1.399 .944 1,716.21 –3,401.38
(.02)* (.00)* (.06)* (18.3) (24.5)

APD 3.398 .582 .513 1,577.76 –3,096.76
(2.71) (21.3) (8.60),

AJD .054 .000 .198 1.449 1.160 .804 1,765.54 –3,493.56
(.13)* (.00) (3.76) (.65)* (19.7) (21.1)

Poland PD 1.191 .424 1,850.62 –3,688.62
DDRA (1.32)* (33.7)

JD 1.489 .135 –1.47 1.424 .202 1,933.54 –3,835.56
(2.23) (8.97) (–.33)* (5.43) (5.26)

APD –.518 .260 .568 1,869.40 –3,719.91
(–.70)* (20.7) (7.53)

AJD 1.756 .109 .278 –6.77 1.687 .123 1,945.91 –3,854.01
(2.80) (7.97) (4.41) (–1.08)* (3.73) (3.92)

(Continued)
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TABLE 2.  (Continued)

Bond Model k × 103 2 × 103 a0 × 103 a1 µ × 103 2 × 103 h L SC

Venezuela PD –.493 .203 2,052.40 –4,092.19
Discount (–.80)* (29.0)

JD .136 .045 –1.93 .481 .326 2,129.47 –4,227.42
(.30)* (7.38) (–.97) (6.99) (7.01)

APD –.500 .149 .267 2,069.66 –4,120.41
(–.83)* (23.7) (4.75)

AJD .290 .032 .289 –3.41 .403 .278 2,135.05 –4,232.29
(.63)* (5.84) (4.75) (–1.56) (6.14) (5.55)

Venezuela PD –.384 .180 2,091.92 –4,171.22
Par (–.64)* (32.9)

JD .855 .051 –5.61 .516 .221 2,186.08 –4,340.63
(2.02) (9.22) (–2.12) (6.28) (5.70)

APD –.306 .139 .242 2,108.54 –4,198.16
(–.47)* (26.5) (5.58)

AJD .961 .044 .309 –11.53 .574 .127 2,198.09 –4,358.34
(2.28) (8.73) (5.51) (–2.54) (3.54) (3.79)

Note:  PD is for pure diffusion, JD for jump diffusion, APD for ARCH pure diffusion, and AJD for ARCH jump diffusion.  The AJD model is specified
as X(t) = k +  z(t)+ J × y,  2(t) = a0 + a1 ( X(t–1) – k )2, where z(t) is an i.i.d. standard normal error, J is a Bernoulli random variable (J= 1with  probability
h and J = 0 with probability 1 – h), and  y is normally distributed with mean µ and variance 2.  For the PD and APD models h= 0, and for the JD model

2(t) = 2.  L is for the log-likelihood  and SC for the Schwartz criterion.  The estimation of the parameters of the four diffusion processes is based on the
maximum-likelihood estimation method.  t–statistics are presented in the parentheses. *Statistically insignificant at the five percent level. The data are
daily and cover the period March 2, 1992 to April 8, 1994.
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14. This conjecture is supported when we allow mean jump size to be a function of some
exogenous factors in the later sections.

in the jump diffusion model.  This is expected because the variance ( 2)
in the pure diffusion case captures the entire volatility of the series
while the jump diffusion model assigns a portion of this volatility to the
jump component.  The mean jump sizes (µ) are, in general, statistically
different from zero.  Since the model does not distinguish between
positive and negative jumps, the observed mean jump size can simply
be an outcome of positive and negative jumps canceling each other
during the sample period.14  However, the mean jump sizes are of the
same magnitude as the means of pure diffusion (k).  This corresponds
to our earlier conjecture, that jump diffusion allows more flexibility in
modeling the skewness of the data.  As expected, the ARCH parameters
are statistically significant for all return series.  This is evidence that
volatility in the emerging markets is time-varying and there is volatility
clustering in these series.

The estimates of the jump variance ( 2) provide additional insight.
First note that in a pure jump model, the jump variances are generally
higher than the variances of the diffusion components.  Such large jump
variations enable jump diffusion models to fit extreme values better than
models without a jump.  For the bonds (table 2), the estimated standard
deviation of jump size ( ) is highest for Poland DDRA and lowest for
Mexico Discount.  Further, the estimated arrival probability of a jump
per day is highest for Peru and lowest for Morocco.  In the case of
country stock indices, the jump standard deviation is highest for the
Polish stock index and lowest for the Mexican stock index.  The
estimate of jump standard deviation is lower for the emerging market
equity index and for the U.S. value weighted index.

The U.S. equity markets display lower jump variations and lower
arrival probability than the Latin American equity market index (as well
as individual countries in the sample).  This is expected since
diversification at the index level reduces the overall jump risk and the
U.S. market is less volatile than these emerging markets.  However, note
that the jump arrival rate and the jump variance of the U.S. value-
weighted return and Latin American index are significantly different are
from zero.  This implies that jump risk may not be diversifiable, as there
exist significant jumps in the return series of the portfolios.  This
finding supports the result of Kim, Oh, and Brooks (1994). 
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TABLE 3.   Jump Diffusion Estimation for Equity Index Returns 

Bond Model k × 103 2 × 103 a0 × 103 a1 µ × 103 2 × 103 h L SC

Argentina PD –.075 .669 1,732.18 –3451.75
(–.07)* (22.7)

JD 3.717 .209 –9.794 1.129 .387 1,767.68 –3,503.82
(3.21) (5.18) (–2.67) (5.45) (4.77)

APD .320 .538 .202 1,739.82 –3,460.72
(.29)* (17.4) (3.62)

AJD 3.449 .179 .123 –10.41 1.121 .334 1,774.30 –3,510.76
(3.19) (4.85) (2.41) (–2.58) (4.65) (4.12)

Brazil PD .388 .989 1,624.66 –3,236.70
(.28)* (18.8)

JD –.004 .000 .387 1.030 .991 1,689.09 –3,356.98
(–.02)* (.00) (.09)* (17.9) (22.9)

APD .828 .869 .128 1,624.38 –3,229.85
(.60) (14.6) (2.45)

AJD .0001 .000 .000 .371 1.041 .999 1,707.58 –3,377.32
(.02)* (.01) (.01)* (.26)* (17.7) (23.0)

Mexico PD .210 .264 1,987.75 –3,962.88
(.30)* (22.1)

JD .135 .083 .159 .382 .472 2,008.99 –3,986.45
(.16)* (4.18) (.08)* (5.98) (4.68)

APD .469 .198 .263 1,999.40 –3,979.87
(.72)* (16.3) (4.64)

AJD –.261 .068 .223 .757 .338 .407 2,015.91 –3,993.98
(–.32)* (3.35) (3.49) (.35)* (4.10) (3.27)

(Continued)
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Bond Model k × 103 2 × 103 a0 × 103 a1 µ × 103 2 × 103 h L SC

Peru PD 1.332 .528 1,113.04 –2,214.42
(1.04)* (17.9)

JD 1.492 .108 –.320 .837 .501 1,135.50 –2,241.86
(1.22)* (3.61) (–.10)* (5.62) (5.75)

APD .635 .425 .208 1,115.46 –2,213.45
(.49)* (15.2) (2.48)

AJD .863 .092 .212 –.364 .845 .394 1,138.79 –2,242.63
(.75)* (3.33) (2.64) (–.09)* (4.75) (4.36)

Poland PD 5.349 1.417 945.10 –1,878.55
(2.59) (18.4)

JD –.745 .009 10.83 2.450 .562 1,099.99 –2,170.84
(–2.48) (6.03) (2.76) (8.95) (17.4)

APD 6.694 1.280 .098 944.67 –1,871.87
(3.22) (16.1) (2.31)

AJD –.670 .011 –.006 10.87 2.484 .556 1,097.69 –2,160.42
(–2.25) (5.38) (–1.76)* (2.72) (8.73) (16.9)

Venezuela PD –1.046 .433 1,146.68 –2,281.70
(–.93)* (23.0)

JD –.112 .197 –5.183 1.296 .180 1,176.05 –2,322.95
(–.11)* (6.23) (–.73)* (2.98) (2.52)

APD –1.603 .338 .250 1,150.81 –2,284.15
(–1.34)* (15.1) (4.13)

AJD .141 .000 .224 –1.326 .422 .817 1,170.26 –2,305.57
(1.26)* (.10) (3.43) (–.97)* (14.3) (20.2)

(Continued)
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TABLE 3.  (Continued)

Bond Model k × 103 2 × 103 a0 × 103 a1 µ × 103 2 × 103 h L SC

LAMR PD .334 .170 2,108.59 –4,204.57
(.59)* (23.5)

JD 1.081 .112 –5.254 .379 .142 2,125.48 –4,219.41
(1.67)* (7.95) (–1.34)* (2.64) (1.92)*

APD .665 .123 .299 2,121.21 –4,223.50
(1.21)* (21.6) (5.09)

AJD .528 .006 .252 –.212 .147 .828 2,127.66 –4,217.48
(.71)* (1.10) (4.36) (–.20)* (15.2) (15.2)

USR PD .301 .030 2,590.75 –5,168.88
(1.27)* (24.2)

JD .671 .015 –1.542 .059 .240 2,614.88 –5,198.21
(2.55) (6.55) (–1.42)* (3.89) (2.85)

APD .418 .027 .103 2,589.58 –5,160.24
(1.75)* (18.5) (2.97)

AJD .666 .015 .011 –1.518 .058 .239 2,609.52 –5,181.91
(2.49) (6.16) (.40)* (–1.38)* (3.72) (2.76)

Note:  PD is for pure diffusion, JD for jump diffusion, APD for ARCH pure diffusion, and AJD for ARCH jump diffusion.  The AJD model is
specified as X(t) = k +  z(t)+ J × y,  2(t) = a0 + a1 ( X(t–1) – k )2, where z(t) is an i.i.d. standard normal error, J is a Bernoulli random variable (J=
1with  probability h and J = 0 with probability 1 – h), and  y is normally distributed with mean µ and variance 2.  For the PD and APD models h= 0,
and for the JD model 2(t) = 2.  L is for the log-likelihood  and SC for the Schwartz criterion.  The estimation of the parameters of the four diffusion
processes is based on the maximum-likelihood estimation method.  t–statistics are presented in the parentheses. *Statistically insignificant at the five
percent level. The data are daily and cover the period March 2, 1992 to April 8, 1994.



Multinational Finance Journal188

B.  Jump Diffusion Models with Time-Varying Jump Size

Table 4 presents the results of estimating a jump diffusion model with
time-varying jump sizes for bonds, as specified by equation 5.
According to equation 5, the mean jump size for bond returns is
specified as a function of contemporaneous, one-day lagged, and one-
day forward daily returns on the Federal Funds Rate, returns on the
home country stock index, and returns on the U.S. equity market.

As shown in table 4, the coefficients of contemporaneous home
country equity returns are positive and statistically significant for all
sovereign bond returns.  This implies that if there is a jump in the
country’s bond returns, the mean size of this jump is positively
correlated to the performance of the home country equity index.  In
other words, a positive shock in the home country stock market is
correlated with a positive shock in its bond returns and vice versa.

For most of the bonds, the return on the U.S. equity index is
significantly, positively correlated to the mean jump size.  A 1%
increase in the return of the Mexican stock index will cause an increase
of .23% in the mean jump size of the Mexico Par bond on the same day.
Similarly, a 1% decline in the return of the U.S. equity index will cause
a decline of .64% in the mean jump size of the same bond.  In addition,
the lagged return of the U.S. equity index has a positive and significant
effect on shocks in the emerging markets, i.e., the shock from the U.S.
equity index is experienced in these markets on the next day, too.  The
only exceptions are the Mexican bonds, where a jump in the U.S. equity
index is fully impounded on the same day (with no lag effects).  Given
the evidence that the home country lagged equity index is insignificant
in explaining mean jump size, we infer that emerging bond markets
react faster to shocks in the home country equity markets than shocks
in the U.S. equity markets.  Finally, the return on federal funds is not
significant in determining the size of the jump.

A possible explanation for this finding is that these sovereign bonds
carry significant country risk.  About half of the bonds in the sample
have no underlying collateral (registered loans) and the other half have
principal backed by U.S. treasury securities and a rolling interest
guarantee.  Since these bonds carry significant default risk (most of the
registered loans have defaulted on interest payments; more information
on each bond is contained in appendix A), their behavior would
resemble that of a residual claim.  Taking this logic a step further, these
bonds would display equity characteristics and therefore the bond
shocks are correlated with shocks in the home country equity market.
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This hypothesis is further supported by evidence that the U.S. equity
market return is significant in explaining the mean jump size in the bond
market while the U.S. interest rate is not.  

Table 5 presents results when mean jump size in country equity

TABLE 4. Jump Diffusion With Time Varying Mean Jump for Bond Returns

Brazil Brazil Mexico Mexico Peru Poland Venezuela Venez.
Exit IDU Discount Par CB Discount Par

k ×103 .470 .445 .378 1.089 2.573 –.209 .038 1.251
(2.51) (1.01)* (3.27) (5.40) (1.73)* (–.34)* (.05)* (1.99)

2 ×103 .007 .017 .003 .011 .226 .030 .064 .061
(9.67) (4.49) (8.11) (9.41) (5.71) (4.30) (4.46) (6.63)

h .375 .496 .397 .276 .368 .511 .411 .276
(12.5) (7.88) (12.3) (8.55) (5.84) (8.38) (5.19) (5.02)

2 ×103 .312 .121 .088 .159 .884 .343 .318 .280
(11.9) (10.7) (11.3) (7.75) (4.56) (8.23) (5.48) (5.16)

c0 .031 .017 –.001 .027 .146 .018 .019 .004
(1.94)* (1.15)* (–.01)* (2.09) (2.83) (.75)* (.59)* (.90)*

c1 –107.21 –135.17 92.34 –290.37 66.72 227.57 279.75 221.71
(–.33)* (–.52)* (.91)* (–1.57)* (.07)* (.79)* (.82)* (.27)*

c2 –226.73 37.84 –113.16 –19.98 –1357.4 –124.87 –41.86 331.65
(–.61)* (.20)* (–1.14)* (–.15)* (–1.37)* (–.38)* (–.12)* (.42)*

c3 –34.78 –97.12 20.58 –30.84 –377.40 –297.75 –447.32 –636.70
(–.11)* (–.48)* (.15)* (–.21)* (–.53)* (–.78)* (–.96)* (–.67)*

d1 .130 .155 .133 .234 .323 .292 .371 .347
(2.72) (4.18) (2.55) (3.49) (2.05) (3.46) (3.55) (2.49)

d2 .031 .052 .055 .057 –.081 –.005 –.047 –.019
(.75)* (1.29)* (1.40)* (.89)* (–.65)* (–.07)* (–.47)* (–.13)*

d3 –.032 .033 .073 .066 .133 .084 .162 .117
(–.72)* (.97)* (1.60)* (.91)* (.63)* (1.21)* (1.48)* (.99)*

e1 .074 .730 .164 .645 3.604 .530 1.047 2.234
(.26)* (3.68) (1.52)* (3.04) (6.46) (1.80)* (2.62) (3.08)

e2 .518 .325 .095 .211 1.350 .591 .469 1.148
(1.65)* (1.99) (.64)* (.80)* (2.29) (1.59)* (1.42)* (2.21)

e3 .261 –.114 –.010 .238 –1.333 .176 .400 .680
(1.21)* (–.78)* (–.08)* (1.07)* (–2.40) (.055)* (1.13)* (1.24)*

LogL 2349.56 1632.73 2650.32 2491.76 1085.9 1294.13 1281.76 1327.65

Note:   The jump diffusion process is specified as x(t) = k +  z(t) + J × y, where z(t) is
an i.i.d. standard normal error, J = 1 with a probability of h and J = 0 with probability 1 – h,
y is normally distributed with mean µ(t) and variance 2, and  µ(t) = c0 + c1 FFFt + c2 FFFt–1

+c3 FFFt+1 + d1 HSRt + d2 HSRt–1 + d3 HSRt+1 + e1 USRt + d2 USRt–1 + d3 USRt+1.  FFRt is the
Federal Funds Rate, HSRt is the home country equity index return, and USRt is the U.S. equity
stock index return.  The data are daily and cover the period March 2, 1992 to April 8, 1994.
Estimation is carried out using the maximum-likelihood method.  T–statistics are presented in
the parentheses. *Statistically insignificant at the five perecnet level.
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returns is a function of contemporaneous, lagged, and forward returns
on the Fed Fund Rate, returns on the bond(s) issued by that country, and
U.S. value-weighted equity returns.  The bond returns are positively

TABLE 5. Jump Diffusion With Time Varying Mean Jump for Equity Returns

Argentina Brazil Mexico Peru Poland Venezuela LAMR

k ×103 4.549 –.011 –.107 1.123 –.745 –.460 .656
(3.47) (–.01)* (–.11)* (.86)* (–2.49) (–.42)* (.58)*

2 ×103 .196 .00 .038 .099 .009 .193 .046
(6.75) (.00)* (3.07) (3.04) (6.02) (7.33) (3.39)

h .463 .977 .699 .552 .563 .203 .690
(7.50) (18.8) (11.13) (5.46) (17.4) (3.48) (9.07)

2 ×103 .664 .816 .245 .674 2.215 .582 .106
(7.67) (14.4) (10.6) (5.46) (8.79) (2.15) (5.09)

c0 .003 .027 .002 –.023 .145 –.031 .004
(.11)* (1.12)* (.22)* (–.62)* (2.97) (–.50)* (.56)*

c1 –375.6 157.04 –162.78 544.49 –168.58 565.71 –82.84
(–1.07)* (.55)* (–1.12)* (.94)* (–.18)* (.37)* (–.74)*

c2 159.27 –152.29 249.99 134.44 –907.44 –590.40 176.89
(.44)* (–.55)* (1.85)* (.32)* (–1.34)* (–.44)* (1.65)*

c3 66.94 –308.13 –109.77 –409.14 –468.82 409.86 –150.06
(.28)* (–1.02)* (–.74)* (–.86)* (–.51)* (.28)* (–1.43)*

d1 3.142 .972 .764 .186 .097 1.136 .651
(4.83) (6.65) (5.85) (2.44) (.61)* (3.29) (8.38)

d2 .177 –.085 .105 .154 .179 .991 .005
(.47)* (–.52)* (.73)* (1.98) (.81)* (2.11) (.06)*

d3 2.011 .343 .092 .097 .064 .023 .177
(3.19) (2.47) (.83)* (1.26)* (.29)* (.06)* (2.16)

e1 .442 .221 1.01 –.074 .591 –1.737 .761
(.96)* (.79)* (5.63) (–.17)* (.89)* (–2.31) (5.27)

e2 .500 –.168 .152 .269 .811 –1.212 .205
(1.30)* (–.56)* (.84)* (.59)* (1.29)* (–.78)* (1.42)*

e3 .229 .004 .121 –.322 1.015 –.304 –.045
(.47)* (.01)* (.73)* (–.66)* (1.18)* (–.23)* (–.39)*

L 1,753.33 1,184.61 2,015.74 1,125.52 1,109.53 1,187.02 2,079.11

Note:  The jump diffusion process is specified as x(t) = k +  z(t) + J × y, where z(t) is
an i.i.d. standard normal error, J = 1 in a case of a jump with a probability of h and J = 0
in case of no jump with probability 1 – h,  y is normally distributed with mean µ(t) and
variance 2, and  µ(t) = c0 + c1 FFFt + c2 FFFt–1  +c3 FFFt+1 + d1 HBRt + d2 HBRt–1 + d3

HBRt+1 + e1 USRt + d2 USRt–1 + d3 USRt+1. FFRt is the Federal Funds Rate, HBRt is the home
country bond return, and USRt is the U.S. equity stock index return.  The data are daily and
cover the period March 2, 1992 to April 8, 1994.  Estimation is carried out using maximum
likelihood method.  t–statistics are presented in the parentheses. *Statistically insignificant
at the five percent level. 
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related to mean jump size for all countries except Poland, while the
effects of the U.S. equity index returns are mixed. Clearly, there is a
connection between the bond market and equity market in the same
country, i.e., both markets experience shocks at the same time.
However, the U.S. stock market is related to jumps in the emerging
bond markets but not in the emerging stock markets.  An explanation for
this phenomenon may be the trading location.  The emerging bonds are
traded predominantly in New York and London while the stock indices
are traded only in the home countries.  Shocks in the U.S. equity market
may affect traders in the emerging bond markets more because these
traders are closer to the source of the shocks than traders in the
emerging equity markets.

In sum, this article suggests that both bond and equity markets in
emerging countries carry significant country risk and that the emerging
bonds in this article also have exposure to the U.S. equity market.

III.  Summary and Conclusions 

It is well known that emerging financial markets are extremely volatile.
Given the conjecture that extreme values in the data may be due to
sporadic releases of information, this article employs the pure diffusion,
jump diffusion, ARCH pure diffusion, and ARCH jump diffusion
models to model the daily return series of several emerging bond and
stock markets. In addition, it attempts to identify some sources of
information surprises in emerging stock and bond markets.  

The results show that the ARCH jump diffusion model fits the data
better than a pure diffusion model, and the jump diffusion model
performs better than both the pure diffusion and ARCH pure diffusion
models.  Also, shocks in the U.S. value-weighted equity index relate to
shocks in the emerging bond market but not shocks in the individual
country equity market.

These results have important implications for risk management, asset
allocation strategies, hedging, and pricing of derivatives in these
markets.  For example, risk measures such as Value at Risk depend on
correct specification of the return distribution.  As shown by Duffie and
Pan (1997), different distributions produce different VARs and different
predictions of extreme events.  The adequacy of risk-reserve capital that
is based on these estimates depends on the correctness of the
distribution assumption.  Our results suggest that jump diffusion may be
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15. Merton (1976a, 1976b) and  Naik and Lee (1990) provide a model to compute option
prices when the underlying stochastic process is a jump diffusion process.

used for modeling bonds and equities from emerging markets.
Furthermore, identification of the appropriate empirical distribution

and sources of jumps in the emerging markets allows the choice of more
appropriate models for pricing options on emerging market securities.15

This has become especially useful since in 1996 the Chicago Mercantile
Exchange introduced options on Brady Bonds issued by Argentina,
Brazil, and Mexico, which are included in our sample. In addition, the
results on jump risk sources can serve as a guide in selecting hedging
strategies for investors, who want exposure to only specific country risk
factors, as opposed to risk from U.S. interest rates and stock markets.

The findings in this article open several avenues for future research.
First, there is a need for derivative pricing models which do not assume
that the jump risk is diversifiable.  Secondly, these results establish the
need for a theoretical model other than the mean-variance framework
for implementing asset allocation strategies when returns of the
underlying security do not follow the normal distribution.  Finally, it
would be interesting to compare the performance of VAR estimation
using jump diffusion to approximate the distribution to VAR estimation
using tail distribution.

Appendix A

Bond Descriptions

Brazil Exit 

These bonds, issued on August 31, 1989, mature on September 15, 2013.  They
carry a fixed interest rate of 6% and the issue size was $1.1 billion.  The
repayment is in the form of a pro-rata sinking fund and these bonds are eligible
for debt equity conversion.  They are registered loans and neither principal nor
interest is collateralized.

Brazil IDU 

The Interest-Due-and-Unpaid bonds were issued by the Federative Republic of
Brazil on November 20, 1992, retroactively to January 1, 1991.  These bonds
mature on January 1, 2001. The face value of all outstanding IDUs is
approximately US-$7 billion.  The coupon is step-up/floating: 7.813% to 1/92,
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8.375% to 1/93, 8.750% to 1/94 and 6-month LIBOR to 1/2001 and is paid
semi-annually.  Neither principal nor interest is collateralized.

Mexico Par Bonds

These bonds were issued as part of Mexico’s debt restructuring program.  They
were exchanged for outstanding debt on March 28, 1990.  Approximately $16.8
billion worth of bonds were issued.  The bonds are denominated in U.S. dollars
and have a face value of $250,000.  They are registered on the Luxembourg
stock exchange but are governed by the law of the State of New York.  The
bonds pay a fixed coupon of 6.25% on a semi-annual basis.  They mature on
December 31, 2019.  The coupon dates are March 30 and September 30.
Interest is collateralized by a deposit of 18 months of interest payments.
Principal is fully collateralized by U.S. Treasury zero-coupon bonds and is
payable in full at maturity.  The bonds also include a call feature that permits
the Mexican government to retire them by paying the principal and accrued
interest on any coupon date.  Starting on July 1, 1996, in addition to the coupon
payments, the holders of these bonds are eligible to receive quarterly payments
based on Mexican oil exports.  However, these payments cannot exceed 30%
of Mexico’s quarterly oil exports.

Mexico Discount 

These bonds were also issued as part of the Mexican debt restructuring
program.  Approximately $8.3 billion worth of bonds were issued at a discount
of 35%.  They are similar to the Mexico Par bonds described above with the
exception that they make variable coupons which are set at a premium of 13/16
over the 6-month LIBOR, and these coupon payments are collateralized at an
interest rate of 10%.

Morocco 

The tranche A of the restructuring and consolidation of debt as an outcome of
the 1985-88 refinancing agreement was issued on September 20, 1990.  The
bond matures on January 1, 2009, and the issue size was $2.8 billion.  The bond
has a floating rate coupon 6-month LIBOR+0.8125% and repayment is in the
form of a pro-rata sinking fund.  This is a sovereign loan guaranteed by the
Kingdom of Morocco.  It has no underlying collateral.

Nigeria Par 

Approximately $2.1 billion of these bonds were issued on January 21, 1992 in
exchange for outstanding debt.  The bonds mature on November 15, 2020.
They are also registered on the Luxembourg Stock Exchange, and are governed
by English Law.  Their principal, $250,000, is fully collateralized by U.S. zero-
coupon Treasury bonds and repayable in full at maturity.  The semi-annual
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coupon payments on these bonds were made at the rate of 5.5% until January
1995, at which point the coupon rate  increased to 6.25%.  Interest payments
are collateralized for 12 months at a rate of 6.25%.  The collateral is on deposit
at the Bank of England.  Like the Mexican bonds, these bonds are callable for
face value plus accrued interest.  Oil-indexed payment adjustment coupons
were also issued with each bond.  Each coupon has a face value of $1,000.
Beginning in November 1996, each coupon entitled the holder to a payment
based on the amount by which the average price of “Bonny Light” oil six
months prior to the payments date exceeds $28, a reference price which will be
adjusted for inflation each payment period.  These semi-annual payments are
not to exceed $15 per coupon and are subject to cancellation if Nigerian crude
oil output for the six months preceding a coupon date falls below 92.5% of the
base production of 1.74 million barrels per day.

Panama 

This is a registered loan guaranteed by the Republic of Panama.  This loan was
issued on October 31, 1985, and matured on September 30, 1997.  The issue
size was $0.6 billion and it carried a floating coupon of 6-month LIBOR plus
1.375%.  This bond had no underlying collateral and has not been serviced
since March 1988.

Peru CB 

This is a sovereign loan issued by the Republic of Peru.  The approximate issue
size is $.8 billion.  This loan is an outcome of a credit agreement reached on
May 31, 1983.  The bond’s maturity date was July 31, 1991.  The bond has not
been serviced since and it is currently under default.  It has a coupon rate of US
prime plus 2.25% or LIBOR plus 2.25%.

Poland DDRA 

The issue size of the Poland Debt Deferral and Restructure Agreement was
$8.44 billion.  They were issued on July 20, 1988, and mature on December 31,
2002.  The coupon rate is 6-month LIBOR + .8125% and repayment is in the
form of a bullet.  The bond is a registered loan with Dresdner Bank as the
international agent.  Neither principal nor interest is collateralized.  Interest has
not been paid since January 4, 1989.  Accrued and unpaid interest was
estimated at 23% as of February 2, 1993.

Venezuela Par 

Approximately $6.6 billion of Venezuela Par bonds were issued on December
18, 1990, in exchange for outstanding debt.  The bonds mature on March 31,
2020, and resemble the Mexican par bonds except for their coupon payments,
interest guarantees, and oil-related payments.  The coupon rate for these bonds
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is fixed at 6.75% and is collateralized by a deposit covering 14 months of
interest.  Each bond was issued with five oil-indexed payment obligations per
$1,000 of face value.  Beginning with the coupon payment in April 1996, on
the date of each subsequent coupon payment, each payment obligation entitles
the holder to a payment equal to the difference between the average price for
Venezuelan crude for the preceding 12 months and $26.  The strike price of
$26 will be adjusted to reflect the U.S. inflation rate.  The payments are not to
exceed $3/obligation and are subject to suspension of the payments on these
obligations if the volume of oil exports declines by more than 7.75%.
However, payments will be allowed to accrue and will earn interest at the
LIBOR.

Venezuela Discount

On December 18, 1990, approximately $1.18 billion of these bonds were issued
at a discount of 30% in exchange for outstanding debt.  The bonds are virtually
identical to the Venezuela Par bonds described above with the exception that
their coupons pay a premium of 13/16% over LIBOR and are collateralized by
a deposit equaling 14 months’ interest at 9.75%.

Appendix B

Derivation of the Likelihood Function

In ARCH jump diffusion model the returns at time t are specified as

 andX t k t z t J y( ) ( ) ( ) ,= + + ×σ

,σ 2
0 1

21( ) [ ( ) ]t a a X t k= + − −

where z(t) is i.i.d. standard normal, J is a Bernoulli random variable taking the
value of (J = 1) in the case of a jump with probability h and the value of zero
(J =0) in the acse of no jump with  probability 1 – h.  The random variable y is
normally distributed with mean µ and variance 2 and it is stochastically
independent of z(t).  The parameters to be estimated are k, a0, a1, h, µ and 2.
The likelihood of each X(t), conditional on the values for the parameters is,

P X t P J f X t J( ( )) ( ) ( ( )| )= = × =0 0

        + = × =P J f X t J( ) ( ( )| )1 1
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The likelihood of the data series is the product of all P(X(t)) and the log
likelihood is then expressed as equation 5.

Note that in a jump diffusion without ARCH effects, (t)2 is replaced by 2

and with ARCH effects by  In a pure jump diffusiona a X t k0 1
21+ − −[ ( ) ] .

model, 2 is a parameter and the parameter space in a pure jump diffusion
model contains k, 2, h, µ, and 2.  In an ARCH model, there is no jump, so h
is restricted to be 0 and µ and 2 are irrelevant.  2 still varies and the parameters
in an ARCH model are then k, a0, and a1.  In a pure diffusion model, the
parameters to be estimated are only k and 2.
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