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This study revisits the Meese-Rogoff puzzle by estimating the traditional
monetary models of exchange rate determination in state-space form and
comparing the accuracy of these forecasts against the naïve random walk model
using a wide range of conventional and alternative measures of forecasting
accuracy. The results demonstrate that incorporating stochastic movements in
the parameters of exchange rate models does not enable the Meese-Rogoff
puzzle to be overturned. However, estimating these models in state-space form
substantially improves forecasting accuracy to the extent that the model and
random walk produce an equivalent magnitude of error. Furthermore, the results
prove that the Meese-Rogoff puzzle can be overturned if the forecasts are
evaluated by alternative criteria. These criteria include direction accuracy,
profitability, and measures that jointly take into account both magnitude and
direction accuracy. (JEL: F31, F37, C53)
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I. Introduction

In 1983, Meese and Rogoff published empirical results demonstrating
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that the random walk cannot be outperformed by exchange rate models
in terms of the magnitude of error in out-of-sample forecasting. One
possible reason for these results is that static models of exchange rate
determination cannot incorporate stochastic movements in the
underlying parameters (Meese and Rogoff, 1983). The Meese and
Rogoff (1983) results continue to stimulate significant research in the
area and countless attempts have been made to overturn the findings
using a variety of data, sample periods, methodologies and model
specifications. Most of these attempts have, however, either been
unsuccessful or fraudulent in their claims of success (in that appropriate
testing was not conducted, or an augmented random walk component
was introduced to the model). The conclusion now widely held by the
profession is that the random walk model cannot be outperformed in
forecasting exchange rates and that exchange rate models have little to
no explanatory power. This is what is commonly known as the
Meese-Rogoff puzzle.

This study employs a state-space model to assess the proposition that
a possible reason for the failure of monetary models to outperform the
random walk is the use of constant, rather than time-varying,
parameters. A model estimated with constant coefficients is unable to
incorporate stochastic movements in exchange rates and the explanatory
macroeconomic variables. A time-varying parameter (TVP) model is a
valid approach to compensate for structural changes, time-varying
relationships and model instability in the context of exchange rate
forecasting. With the advent of improvements in econometrics, TVP
estimation has been employed by some economists to compensate for
these possibilities (see, for example, Wolff, 1987; Schinasi and Swamy,
1989; Canova, 1993). There is some evidence that estimating monetary
models in state-space form improves forecasting accuracy compared to
static model forecasts (see, for example, Schinasi and Swamy, 1989;
Rossi, 2006; Moosa and Burns, 2013a). However, these previous studies
have several limitations that are addressed in this paper.

Unlike previous studies that use TVP estimation to generate
exchange rate forecasts and revisit the Meese-Rogoff puzzle, this study
is differentiated in three ways. First, conclusions reached about relative
forecasting accuracy (in terms of the magnitude of error) are based on
a statistical test of the numerical difference in the magnitude of error
(measured using two different approaches: the AGS test and the Diebold
and Mariano test). Although a small number of studies use the
Diebold-Mariano test for this purpose, very few studies test whether the
difference in the RMSEs is statistically significant (remembering that
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Meese and Rogoff drew their conclusions based on a comparison of the
numerical difference in the RMSEs, not the loss function defined by the
Diebold-Mariano test). Any study that claims to outperform the random
walk, without testing whether the difference in the RMSEs is
statistically different, cannot legitimately claim to overturn the Meese-
Rogoff puzzle. By formally testing whether the difference in magnitude
only measures of forecasting accuracy is statistically significant, this
study exposes the dangers and pitfalls of previous studies in the area.
The results demonstrate that just because the random walk has a
numerically smaller RMSEs, this does not mean that the random walk
outperforms a competing model. What matters is whether the difference
is statically significant. To confirm the robustness of hypothesis testing
in relation to the difference in the RMSEs (using the AGS test), the
Diebold-Mariano test, which tests for statistical difference in the loss
function, is also used here. 

The second way in which this study is differentiated to previous
studies is that forecasting accuracy is assessed using several alternative
measures that do not rely exclusively on the magnitude of the
forecasting error.1 While the author acknowledges that the use of
alternative criteria to reconsider the Meese-Rogoff puzzle is not unique
to this study, there are some important distinctions to the approach
presented here. The small number of previous studies that have
employed alternative measures of forecasting accuracy to reconsider the
Meese-Rogoff puzzle employ one, or at most two, alternative measures.
These are either profitability, direction accuracy, or both. A major
problem with this approach is that direction accuracy and profitability
are closely related, meaning that the findings drawn from either of these
measures is likely to corroborate the other. Here, six such measures and
tests (direction accuracy, the Pesaran and Timmerman (1992) test, mean
returns, risk-adjusted returns, the adjusted root mean square error and
proximity to perfect forecast) are used to demonstrate the proposition
that the Meese-Rogoff puzzle can be overturned if forecasting accuracy
is assessed by these alternative measures. The use of such a broad range
of alternative measures of forecasting accuracy demonstrates the
robustness of the proposition that the Meese-Rogoff puzzle can be
outperformed if forecasting accuracy is assessed by measures that do
not rely exclusively on the magnitude of error.

The third way in which this study makes a distinct contribution is by

1. The author is not aware of any other study that employs as many alternative measures
of forecasting accuracy as presented here.
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estimating the monetary models of exchange rate determination in
state-space form using a more contemporary data sample. Most studies
use a data sample from the 1970s and 1980s (see, for example, West,
Edison and Cho, 1993; Wolff, 1987; Schinasi and Swamy, 1989) and a
small number use data spanning up until the early 2000s (see, for
example, Frommel, MacDonald and Menkhoff, 2005; Junttila and
Korhonen, 2011). This study uses a more contemporary sample,
spanning up to 2011 which therefore provides insight into the
forecasting accuracy of TVP models well into the new millennium.
Furthermore, while most studies utilise up to four bilateral exchange
rates (and these are generally expressed against the USD), this study
utilises six cross rates (only two of which are measured against the
USD), thereby overcoming any dollar bias that may have existed in
previous studies.

The results of this study show that stochastic movements in the
underlying parameters of exchange rate models cannot explain the
Meese-Rogoff puzzle. However, incorporating stochastic movements in
the parameters brings about a substantial improvement in the magnitude
of error of the model forecasts, to the extent that the model forecasts are
as equally accurate as the random walk forecasts. More importantly, the
study reveals that the random walk can be outperformed by any measure
of forecasting accuracy that does not rely exclusively on the magnitude
of error. It achieves this by being the first study to utilise such a large
number of alternative measures of forecasting accuracy. Overall, the
findings debunk the proposition that the inability of static models to
incorporate time-varying relationships can explain the Meese-Rogoff
results. It also contributes to the growing body of contemporary
literature that employs alternative measures to assess the forecasting
accuracy of exchange rate models. 

In the next section, a discussion of the relevant literature is provided.
A description of the methodology and data is presented in section III,
and section IV describes the empirical findings. This is followed by a
discussion of the results and conclusion.

II.  Literature review

The Meese-Rogoff puzzle refers to the widely accepted phenomena that
the naïve random walk model cannot be outperformed by exchange rate
models in out-of-sample forecasting. In their original study, Meese and
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Rogoff (1983) analyse the relationship between exchange rates and
contemporaneous macroeconomic fundamentals using a variety of
models, including the Frenkel-Bilson model (flexible price monetary
model), Dornbusch-Frankel model (sticky-price monetary model) and
Hooper-Morton model (sticky-price monetary model incorporating
current account effects).2 Meese and Rogoff (1983) estimate the
exchange rate models using various techniques, including using
ordinary least squares (OLS), generalised least squares (GLS),3 and
Fair’s (1970) instrumental variables technique (IV).4 The forecasts
generated by the models are compared against those of the naïve random
walk, with and without drift, using the mean absolute error (MAE),
mean square error (MSE) and root mean square error (RMSE). Based
on a numerical comparison of these measures, Meese and Rogoff
conclude that the random walk cannot be outperformed by monetary
models in forecasting exchange rates. However, no formal testing of the
statistical difference in these measures is performed.5  Despite several
attempts to overturn these results over the past 30 years, it is now
widely accepted that the random walk model cannot be outperformed in
forecasting exchange rates. 

One of the reasons suggested in the literature for the failure of
exchange rate models to outperform the random walk is stochastic
movements in model parameters (see, for example, Meese and Rogoff,
1983; Schinasi and Swamy, 1989). Schinasi and Swamy (1989) present
three compelling arguments to support this contention. First, model
parameters can change over time because traders do not use information
in the same way over all policy regimes and all time horizons. Second,
market participants are heterogeneous, thus macroeconomic variables
are not related to the exchange rate by a simple fixed-coefficient
relationship. Third, the use of fixed coefficients implies the imposition
of a restriction that may or may not be valid and empirical evidence
suggests that a fixed coefficient restriction is invalid for macroeconomic

2. The sample comprised monthly data spanning the period 1973 to 1981 for three
different bilateral exchange rates (USD/DEM, USD/JPY and USD/GBP). A rolling regression
with a fixed sample size is used to generate out-of-sample forecasts from 1976 to 1981.

3. To correct for serial correlation in the error term.

4. To correct for simultaneous equation bias.

5. The AGS test suggested by Ashley, Granger and Schmalensee (1980) is available to
test for the statistical difference in the RMSEs.



Multinational Finance Journal46

models (see, for example, Moosa and Kwiecien, 2002).6  
Several studies support the proposition that the role played by

macroeconomic fundamentals in driving exchange rate movements
varies due to changing economic conditions. Junttila and Korhonen
(2011), for example, use an error correction model with time-varying
parameters to show empirically that the significance of the coefficients
on the explanatory variables may differ according to the monetary
regime. They find that the coefficient on relative interest rates has
similar magnitudes, but different signs, depending on the current
regime. Similarly, Wolff (1987) uses a Markov-switching model and
suggests that parameter instability in exchange rate models may arise
from instability in the money demand function, policy regime shifts and
changes in the long-run real exchange rate (such as changes in oil prices
or global trade patterns). Frommel, MacDonald and Menkhoff (2005)
also use a Markov-switching framework and present evidence of an
unstable relationship between macroeconomic fundamentals and
exchange rates over time. They demonstrate that the impact of
macroeconomic variables (such as short-term interest rates, inflation
differentials and levels of economic growth) on exchange rates is
closely related to the monetary policy regime and regime switches.
Likewise, Rossi (2006) concludes that there is some sort of relationship
between the exchange rate and its fundamentals, “but it is not stable
over time.” Rossi (2006) suggests that if the nature of parameter
instability is exploited, it may be possible to find economic models that
forecast better than the random walk in terms of the magnitude of
forecasting error. The proposition that the Meese-Rogoff puzzle can be
overturned by incorporating stochastic movements in the parameters is
explicitly considered in this study.

Time-varying parameters can be incorporated into exchange rate
models through a variety of estimation procedures. Markov-switching
models have been popular in this context because they capture the
exchange rate adjustment process through a transition probability which
is a function of the lagged deviation of the real exchange rate from its
“equilibrium” level (see, for example, Frommel, MacDonald and
Menkhoff, 2005; Engel, 1994). However, very few studies provide

6. Moosa and Kwiecien (2002) show that the nominal interest rate is more capable of
predicting inflation if the assumption of fixed coefficients is relaxed. The implications of
representing the Fisher equation by a fixed coefficient regression equation are that the real
interest rate is fixed and that the response of the nominal interest rate to inflationary
expectations does not change over time. These assumptions are unrealistic.
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evidence that the improvement in forecasting accuracy relative to the
random walk is statistically significant. For instance, Engel (1994) uses
a Markov-switching model but is unable to outperform the random walk
in terms of the magnitude of the error (although he does provide
evidence indicating that the model is superior at predicting the direction
of change in the exchange rate). Frommel, MacDonald and Menkhoff
(2005) also use a Markov-switching model to forecast the DEM/USD,
JPY/USD and GBP/USD, and report lower numerical RMSEs, relative
to the random walk with drift. However, no formal testing of whether
this difference is statistically significant is undertaken. Adopting a
different approach, Canova (1993) uses a multivariate Bayesian
time-varying coefficients autoregressive model because it has the
benefit of utilising information from five spot rates (FFR, CHF, DEM,
GBP and YEN vis-à-vis the USD) and the corresponding six interest
rates. For all exchange rates considered, Canova claims to outperform
the random walk based on a numerical comparison of conventional
measures of magnitude of forecasting accuracy (Theil’s U and MAD).
Similar to the aforementioned studies, Canova (1993) fails to test
whether the difference in the measures reported for the random walk
and model is statistically different. 

Adaptive expectation models have also been used to address
time-variant issues in the context of exchange rate forecasting. These
models largely became popular because they are relatively easy to
employ. Molodstova and Papell (2009, 2013), for example, revisit the
Meese-Rogoff puzzle using an adaptive expectation model. Using the
test of superior predictive ability (SPA) to compare the out-of-sample
predictability of the model and random walk forecasts, they conclude
that the model outperforms the random walk. However, adaptive
expectation models specify the current exchange rate to be a weighted
average of the previous values of the exchange rate, plus an adjustment
for any error in the previous periods forecast which, therefore,
effectively nests the random walk model within the exchange rate
determination model. Outperforming a random walk model with a
model that nests the random walk model is tantamount to intellectual
fraud and any study claiming to resolve the Meese-Rogoff puzzle using
this approach should be entirely discounted.

Alternatively, some studies adopt the Kalman filter technique to
incorporate time-varying parameters into exchange rate models. Yet
again, almost all such studies neglect to test whether the difference in
the RMSEs is statistically different. For instance, shortly after the
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publication of the Meese and Rogoff results, Schinasi and Swamy
(1989) re-worked the Meese-Rogoff results by re-estimating the same
exchange rate models in a TVP framework using the Kalman filter
technique.  Based on a numerical comparison of conventional measures
of forecasting accuracy, they report that the random walk is
outperformed by exchange rate models estimated using TVP. They
conclude that “while our results on fixed coefficient models support
most of the Meese and Rogoff conclusions, we find that when
coefficients are allowed to change, an important subset of conventional
models……can outperform forecasts of a random walk model”.
However, Schinasi and Swamy (1989) do not test whether the numerical
difference in the RMSEs of the random walk and exchange rate models
is statistically different. Wolff (1987) similarly employs a recursive
application of the Kalman filter to estimate the Frenkel-Bilson and
Dornbusch-Frankel models in a TVP framework for USD/GBP,
USD/JPY and USD/DEM using a sample from 1973 to the beginning of
the floating exchange rate period in 1984. For the USD/DEM, Wolff
(1987) presents evidence indicating that ex-post forecasts compare
favourably well to that of the random walk, in that Theil’s U is less than
one for both models at the 1, 3, 6, 12, 24 and 36 month forecasting
horizon. However, Wolff (1987) also neglects to test whether the
difference in the RMSEs of the model and random walk is statistically
different. 

Moosa and Burns (2013a) similarly replicate the Meese-Rogoff
study using a TVP framework although, unlike the aforementioned
studies, they formally test whether the difference in the RMSEs is
statistically different.7 Using the AGS test, their results show that the
forecasts generated by exchange rate models cannot produce a
statistically smaller RMSEs to the random walk.8 Moosa and Burns
(2013a) also assess forecasting accuracy using a small number of
alternative criteria (including direction accuracy and profitability). They
conclude that the random walk can be outperformed by exchange rate
models if forecasting accuracy is measured in terms of the ability to

7. Moosa and Burns (2013a) use the same exchange rates and time period as used by
Meese and Rogoff (1983), although they estimate the models by maximum likelihood using
the Kalman filtering technique.

8. The author is not aware of any paper other than Moosa and Burns (2013a) where the
AGS test is employed to determine if the improvement in the RMSE that arises from
estimating the monetary model in a TVP framework is sufficient to outperform the random
walk.
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predict direction, measures that take into account magnitude and
direction, and in terms of profitability. As sample selection is raised by
Meese and Rogoff (1983) as one possible explanation for the puzzle,
this study assesses the robustness of the Moosa and Burns (2013a)
findings using a more contemporary sample period and alternative cross
rates.

The use of alternative approaches to evaluate relative forecasting
accuracy is not a novel or controversial approach. Cheung, Chinn and
Pascual (2005) argue that using alternative criteria does not boil down
to “changing the rules of the game.” In fact, there is a growing
recognition that forecasting accuracy should be assessed by criterion
that relates to the purpose of the forecast. Relying entirely on
conventional measures of forecasting accuracy is inappropriate if it
bears no relation to the purpose of the forecast and this approach may
overlook important aspects of prediction, particularly at long horizons.
Several authors advocate the use of other criteria because minimising
the RMSE may not be important from an economic standpoint (see, for
example, Christoffersen and Diebold, 1998; Cheung, Chinn and
Pascual, 2005). Faust, Rogers and Wright (2003), for example, argue
that “the absence of statistically significant predictive power need not
indicate that an optimal decision-maker should ignore the model.”
Moosa (2006) demonstrates that notions of forecasting accuracy are
heterogeneous and should be defined and measured depending on the
underlying decision rule, and that the most important consideration
when assessing exchange rate forecasts is whether they lead to better
decisions (Moosa, 2000).9 Clearly, the methodology used to evaluate
forecasting accuracy will impact conclusions reached about the relative
accuracy of competing models in an out-of-sample forecasting exercise
(Rossi, 2013). Corte, Lucio and Tsiakas (2009) actually attribute the
Meese-Rogoff puzzle to the use of improper criteria that fail to take into
account the real economic gains produced by the forecasts. Likewise,
Moosa and Burns (2012a) argue that the random walk appears to be
superior to exchange rate models soley because forecasting accuracy is
measured by metrics that rely entirely on the magnitude of the
forecasting error, while overlooking the ability of the models (and the
random walk) to predict the direction of change.

Although economists have grappled with the inability of exchange

9. Moosa (2000) goes on to state that the forecasts should be accurate and timely,
however a methodology for measuring or assessing these characteristics is not suggested.
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rate models to outperform the random walk in terms of the magnitude
of error for years, Moosa (2013) demonstrates that this finding is to be
expected. He argues that as the period to period change in the spot rate
is small – and this is, by definition, the magnitude of error of the
random walk forecasts – the random walk will always have a very small
magnitude of error, making it almost impossible for the model forecasts
to generate a numerically smaller and statistically different RMSE.
Similar reasoning put forward by Engel, Mark and West (2008) led
them to conclude that beating the random walk in terms of the RMSE
is “too strong a criterion for accepting a model”.

Based on these arguments, the question arises as to what other
criteria are appropriate to assess the accuracy of exchange rate model
forecasts. In some circumstances, the direction of change is the only
criterion of importance when assessing forecasting accuracy. For
instance, Engel (1994) suggests direction accuracy is the only relevant
criterion in the case of central banks under a pegged exchange rate
system, where intervention is required if the currency is expected to
depreciate “regardless of the size of the expected depreciation.”  Moosa
(2006) suggests intraday trading (where the interest rate factor is
negligible) as a further example where direction accuracy is the only
important criterion. Alternatively, the magnitude of error can be the
only important criterion in other circumstances (for example, betting on
market volatility using straddles and strangles). There are also situations
where both the magnitude of error, and direction accuracy, are
important criteria (for example, carry trade). 

Increasingly, direction accuracy is being used to assess the
predictive power of exchange rate models. The reason for this is that a
correct prediction of the direction of change is almost always more
important than the magnitude of the error in the context of forecasting
exchange rate movements (Engel, 1994; Engel and Hamilton, 1990).
Several studies have unquestionably demonstrated that the random walk
model can be outperformed by exchange rate models in terms of the
direction of change (Boothe and Glassman, 1987; Engel, 1994;
Abhyankar, Sarno and Valente, 2005; Cheung, Chinn and Pascual,
2005; Corte, Lucio and Tsiakas, 2009). As exchange rate forecasts are
an input in financial decision making, another important test of
forecasting accuracy is the ability to generate profit by basing decisions
on these forecasts (such as currency trading). For instance, West, Edison
and Cho (1993) propose a utility-based evaluation of exchange rate
predictability (utility in this context is measured by profitability).
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Overall, the literature lends support to the superiority of model forecasts
when profitability is used to assess forecasting performance.
Abhyankar, Sarno and Valente (2005), for example, find that the
relative performance of exchange rate models improves when
profit-based criterion are used. Li (2011) also finds that the profitability
of carry trade and risk-return measures is enhanced by using model
forecasts over and above the random walk forecasts.

Although economists have moved towards assessing exchange rate
forecasts in terms of both the magnitude of error and direction accuracy,
the literature almost exclusively examines these characteristics in
isolation to each other. However, Moosa and Burns (2012a) propose a
measure of forecasting accuracy that takes into account both magnitude
and direction accuracy, without bias to either (the adjusted root mean
square error or ARMSE). Using simulated data, they show that when
magnitude and direction are jointly considered, the random walk can be
outperformed by static exchange rate models. In a subsequent study,
Moosa and Burns (2013a) use the same data sample as the one utilised
in Meese and Rogoff (1983) to demonstrate that the random walk can
be outperformed by exchange rate models estimated with both
stochastic and time-varying coefficients if forecasting accuracy is
assessed using the ARMSE.

Another method for jointly testing magnitude and direction accuracy
is by measuring the proximity of the forecasts to a perfect forecast.
Moosa and Burns (2013b) propose running a regression on the predicted
change against the actual change and using a Wald test to determine the
proximity of the forecasts to a perfect forecast (a set of perfect forecasts
is represented by the general equation  with1 1

ˆ ( )t t t tS S S S     
a general restriction that (α, β) = (0,1)). The numerical value of the
Wald test statistic is indicative of the deviation of the line of best fit of
the model forecasts from a perfect forecast, invariably involving
magnitude and direction errors. As the test statistic is indicative of the
deviation of the forecasts from a set of perfect forecasts, the numerical
value of the Wald test statistic for this joint coefficient restriction can
be compared (the smaller the numerical value of the Wald test statistic,
the closer the forecasts are to a perfect fit) and a conclusion reached as
to which model produces the better forecasts in terms of magnitude and
direction accuracy. Using a sample of data from 1990 to 2010, Moosa
and Burns (2013b) show that the random walk can be outperformed by
the static version of the flexible price monetary model if forecasting
accuracy is measured by the proximity of the model forecasts to a
perfect forecast.
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III.  Data and methodology

A. Model estimation 

The approach adopted in this study is to estimate the three monetary
models exchange rate determination used originally by Meese and
Rogoff (1983) in state-space form. Following the methodology of
Koopman, Shephard and Doornik (1999),10 Koopman et al. (2006) ,11

Moosa (2006) and Mendelssohn (2011), these models are estimated
with time-varying parameters using the Kalman filter technique and
incorporating unobserved components.12 There are several motivations
underpinning this approach. First, the incorporation of unobserved
components provides a generalised model in which explanatory
variables that do not appear explicitly on the right-hand side of the
equation are accounted for by the trend and cycle components. It
follows that the traditional specification of exchange rate determination
models is adequate for the purposes of this study because unobserved
components can account for any missing variables. Second, the results
of the unit root tests show that, for the sample used in this study, the
exchange rates are not co-integrated with the macroeconomic variables
because the variables are not integrated of the same order (tables 1 and
2). Therefore, an error correction model (although legitimately used in
other studies, such as Rapach and Wohar, 2002) is unsuitable for this
study. Third, due to the lengthy sample used here, structural breaks are
present in the data.13 Evidence shows that allowing for time-varying
parameters in the presence of multiple structural breaks produces
statistically significant gains in forecasting accuracy (see, for example,
Barnett, Mumtaz and Theodoridis, 2012; Lu and Ito, 2008). Fourth, in
order to allow for any non-stationarity in the time series, the various

10. Koopman, Shephard and Doornik (1999) demonstrates how a model is represented
in state-space form.

11. Koopman et al. (2006) describes the statistical treatment of the structural time series
model (represented by equations (1) to (3)) based on the state-space form.

12. A full description of the specification of the measurement and transition equations
for structural time series models, which form the state-space representation required for TVP
estimation by the Kalman filter, can be found in Moosa (2006). TVP estimation is carried out
by using the STAMP software (Structural Time Series Analyser, Modeller and Predictor).

13. The results of the Bai and Perron (1998) test for global multiple breaks show that the
time series used in this study are characterised by multiple break points. These results are
available from the author upon request.
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components of the model are characterised as stochastic time-varying
parameters (Young, Diego and Wlodek, 1999). Fifth, there are a range
of studies that advocate using a time-varying parameter model as a valid
approach to modelling and forecasting exchange rates (see, for example,
Schinasi and Swamy, 1989; Wolff, 1987; Moosa and Burns, 2013a).
Sixth, diagnostic testing of the residuals indicates that the model is a
good fit.14

To estimate the Frenkel-Bilson, Dornbusch-Frankel and
Hooper-Morton models in state-space form with unobserved
components, the equations are represented as:

(1)     * * *
1 2 3t t t t t t t t t t t t ts m m y y i i             

(2)
   

   *

* *
1 2

*
3 4      

t t t t t t t t t

e e
t t t t t t t

s m m y y
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where st is measured as the log of the domestic per foreign exchange
rate (i.e. the price of the foreign currency in terms of the domestic
currency), m is the log of the money supply, y is the log of real income,
i is the short-term interest rate, qe is the long-run expected inflation rate
and B is the trade balance (an asterisk indicates the variable from a
foreign perspective) and εt is the error term. The time series components
of st are the trend (μt), the cyclical component (φt) and the random
component (εt).

The trend variable (μt) represents the long-term component in the
series and indicates the general direction of movement of the dependent
variable. The trend consists of two parts, level and slope, both of which
are specified to be stochastic. The level and slope are constructed by
putting greater weight on more recent observations. The stochastic trend
is represented by the general specification of the level and slope,

14. The results of the diagnostic testing are presented in tables 4 to 8 and discussed in
section IV, part B.
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TABLE 1. Results for unit root tests (data in log levels)

ERS Point Ng-Perron
Variable ADF PP KPSS Optimal Modified

CAD/AUD Spot rate –3.55*** –3.56*** 0.35 8.70 –3.29
Relative
interest –3.02** –3.08** 0.35 3.91* –7.22*
Relative
inflation –2.35 –3.00** 0.39* 3.06** –8.06*
Relative
money –1.12 –1.20 1.46*** 59.68 –0.25
Relative
income –0.28 –0.50 1.43*** 14.81 0.32

CAD/GBP Spot rate –2.00 –2.02 0.37* 6.50 –4.06
Relative
interest –4.66*** –4.05*** 0.07 1.80*** –12.09**
Relative
inflation –1.65 –2.77* 0.21 5.34 –4.89
Relative
money –0.63 –1.19 0.50** 20.96 –1.09
Relative
income 0.98 1.14 1.91*** 184.15 2.20

CAD/USD Spot rate –0.58 –0.68 0.47** 9.26 –2.11
Relative
interest –1.72 –2.14 1.02*** 4.13* –5.92*
Relative
inflation –2.23 –4.05*** 0.35 8.56 –2.20
Relative
money –0.84 –0.47 2.01*** 1.07 1.24
Relative
income –0.62 –0.68 0.49** 11.57 –1.32

GBP/AUD Spot rate –2.04 –2.08 0.38* 17.46 –1.56
Relative
interest –2.39 –2.57* 0.44* 2.42** –11.72**
Relative
inflation –2.23 –2.19 0.24 2.54** –10.29**
Relative
money –0.63 –0.79 1.49*** 16.48 –0.56
Relative
income –0.12 –1.18 1.96*** 106.99 1.09

( Continued )
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respectively:
(4)1 1t t t t      

(5)1t t t   

where  and . 2~ 0,t NID    2~ 0,t NID  
The stochastic cycle (φt) is constructed from a sine-cosine wave

which is impacted by shocks from disturbances and by a damping
factor. The statistical specification of the cyclical component is as
follows:

(6) 1 1cos sint t t t         

(7) * * *
1 1sin cost t t t          

TABLE 1. (Continued)

ERS Point Ng-Perron
Variable ADF PP KPSS Optimal Modified

GBP/USD Spot rate –2.85** –2.94** 0.41* 4.30* –6.37*
Relative
interest –2.55* –2.26 0.76*** 4.34* –6.01*
Relative
inflation –1.67 –2.19 0.35 8.91 –2.52
Relative
money –1.76 –1.77 1.97*** 114.77 0.34
Relative
income 0.37 –0.04 2.10*** 193.55 1.50

Trade Canada –1.94 –1.79 0.35 1.64*** –21.44***
balance Australia –1.85 –2.23 1.50*** 6.17 –3.67

United
Kingdom –2.35 –5.37*** 1.26*** 8.58 –1.27
Japan –2.57* –4.26*** 1.63*** 9.20 –1.20
U.S.A –1.25 –1.15 1.67*** 15.77 –1.24

Note:  For the ADF test, the lag length was selected by using SIC (Modified SIC for ERS
& Ng–Perron) values. For the PP and KPSS tests, the optimal bandwidth was selected by
Newey–West method using Bartlett kernel. All unit root tests are performed with the
assumption of constant term in the logarithm of the series, with the null hypothesis of unit
root for all tests except for KPSS test where the null hypothesis is stationarity. The spectral
estimation method for the ERS point optimal test and Ng–Perron modified unit root test is AR
spectral OLS and AR GLS (detrended), respectively. An * , **, *** denote statistical
significance at the 10, 5 and 1 per cent levels, respectively.
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TABLE 2. Results for unit root tests (first differenced variables)

ERS Point Ng-Perron
Variable ADF PP KPSS Optimal Modified

CAD/AUD Spot rate - - - 0.33*** –34.27***
Relative
interest - - - 0.17*** –12.40**
Relative
inflation –14.84*** - 0.05 - 0.35
Relative
money –10.78*** –19.30*** 0.34 0.34*** –54.91***
Relative
income –14.00*** –21.90*** 0.35 0.30*** 21.11***

CAD/GBP Spot rate –18.92*** –18.91*** - 0.89*** –4.02
Relative
interest - - - - -
Relative
inflation –8.88*** –18.01*** - 4.04* –11.36**
Relative
money –16.32*** –16.90*** 0.38* 0.23*** –38.63***
Relative
income –22.76*** –22.87*** 0.43* 0.55*** 0.91

CAD/USD Spot rate –18.54*** –18.54*** 0.28 0.17*** –163.88***
Relative
interest –11.24*** –20.75*** 0.09 0.02*** –1,279.95***
Relative
inflation –10.46*** - - 13.46 –1.97
Relative
money –6.28*** –18.00*** 0.12 1.07*** –6.95*
Relative
income –22.90*** –22.31*** 0.27 1.81*** –0.79

GBP/AUD Spot rate –17.41 –17.40*** 0.45* 0.33*** –4.14
Relative
interest –4.46*** –17.09* 0.09 - -
Relative
inflation –8.45*** –15.41*** - - -
Relative
money –17.51*** –17.51*** 0.13 0.20*** 106.71***
Relative
income –12.93*** –20.80*** 0.06 0.06*** –6,088.85***

( Continued )
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where appears by construction such that  and  are uncorrelated*
t t

*
t

white noise disturbances with variances  and , respectively. The2
 *

2



frequency of the cycle and the damping factor on the amplitude are

 and , respectively. The period of the cycle, which0    0 1 
is the time taken by the cycle to go through its complete sequence of
values, is 2π/θ (Koopman et al., 2006).

TABLE 2. (Continued)

ERS Point Ng-Perron
Variable ADF PP KPSS Optimal Modified

GBP/JPY Spot rate –16.08*** –16.09*** 0.10 0.64*** –1.82
Relative
interest –12.92*** –12.76*** 0.15 0.17*** –146.89***
Relative
inflation –8.27*** –17.24*** - - -
Relative
money –18.85*** –18.89*** - 0.16*** –72.54***
Relative
income –21.16*** - - 0.50*** –4.07

GBP/USD Spot rate - - 0.05 0.87*** –0.62
Relative
interest –12.92*** –12.77*** 0.12 0.18*** –141.53***
Relative
inflation –9.43*** –14.90*** - 6.89 –9.71**
Relative
money –7.49*** –17.23*** 0.30 0.38*** –65.88***
Relative
income –11.20*** –24.10*** 0.09 0.14*** –1.12

Trade Canada –4.49*** –7.20*** - - -
balance Australia –6.73*** –7.89*** 0.06 25.58 –11.14**

United
Kingdom –5.37*** - 0.09 13.19 –0.06
Japan –5.47*** - 0.05 14.34 –0.70
U.S.A –4.95*** –4.89*** 0.10 0.64*** –10.90**

Note:  For the ADF test, the lag length was selected by using SIC (Modified SIC for ERS
& Ng-Perron) values. For the PP and KPSS tests, the optimal bandwidth was selected by
Newey-West method using Bartlett kernel. All unit root tests were performed with the
assumption of constant term in the logarithm of the series, with the null hypothesis of unit
root for all tests, except for the KPSS test, where the null hypothesis is stationarity. The
spectral estimation method for the ERS point optimal test and Ng-Perron modified unit root
test is AR spectral OLS and AR GLS (detrended), respectively. An * , **, *** denote
statistical significance at the 10, 5 and 1 per cent levels, respectively. Where the null
hypothesis is rejected for the time series in levels at the 5 per cent level, no further unit root
tests were performed on the data in first differences.
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The Kalman filter (KF) is a set of vectors and matrix recursions
which are used to estimate the unknown parameters via recursive
estimation so as to minimise the MSE. In this sense, the KF plays the
same role in state-space modelling as least squares estimation does for
a conventional regression model. The KF can take a variety of forms
and the form used in this study is represented as:

(8)| 1 1a ( | , 0)t t t tE Y   

(9)   2
| 1 t|t-1 t|t-1 t-1a a ' Y , 0t t t tP E       

This is referred to as the mean and the MSE of the state space
respectively, given past information and setting δ to zero.15 Filtering and
smoothing algorithms are then applied on known state and error system
matrices. The unknown values within the matrices are treated as
parameters to be estimated using maximum likelihood estimation. 

Once the model is estimated in state-space form using the
aforementioned methodology, a recursive regression is used to generate
one-step ahead forecasts at the one month horizon, meaning that the
model uses all available information to generate the model forecasts
(which is in line with what is recommended by Marcellino, 2002, and
Marcellino, Stock and Watson, 2003). In out-of-sample forecasting, the
model is estimated over part of the sample period, t=1,2…k, then a
one-period-ahead forecast is generated for the point in time k+1. The
process is then repeated by estimating the model over the period
t=1,2,…k+1 to generate a forecast for the point in time k+2,  , and2ˆks 
so on until , where n is the total sample size. The forecast logˆns
exchange rate generated using the Frenkel-Bilson model is:16

(10)     * * *
1 2 3ˆ ˆ ˆ ˆˆ ˆt t t t t t t t t t t ts m m y y i i           

Hence the forecast level of the exchange rate is:

(11) ˆ ˆexpt tS s

15. These terms are corrected by the use of an augmented KF to allow for δ not equal to
zero.

16. For simplicity, only the Frenkel-Bilson model is described here.
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Turning now to the naïve random walk model, this model is represented
as follows:

(12)1t t ts s  
or alternatively:

(13)1t t t ts s s    

where εt is completely random and displays no pattern over time. The
time series follows a random walk with drift if the change between the
current and previous period spot rate is equal to a drift factor (d), plus
the purely random component εt. In this case, the random walk with drift
is represented as:

(14)1t t ts d s   

(15)1t t t ts s s d     

Following the approach of Engel and Hamilton (1990), Engel
(1994), and Moosa and Burns (2013a), the choice between the random
walk without and with drift depends on the statistical significance of the
drift factor. If the drift factor is significant in-sample, then the
appropriate out-of-sample standard is the random walk with drift. As per
the Meese and Rogoff (1983) approach, the drift factor of the random
walk is estimated as the average value of the percentage change in the
exchange rate. As demonstrated in table 3, the drift factor is only
significant in one instance. 

B. Conventional measures of forecasting accuracy

Once the time series for the forecast exchange rates ( ) are obtainedt̂s
for the exchange rate models and naïve random walk model, a variety
of forecasting accuracy measures are calculated. First, the root mean

TABLE 3. Estimates drift factor and statistical significance

CAD/AUD GBP/AUD CAD/GBP CAD/USD GBP/USD GBP/JPY
0.28 0.59** –0.25 –0.35 –0.06 0.34

(0.2817) (0.0366) (0.3616) (0.1854) (0.8519) (0.3195)
Note:  P-values are in parentheses. An *, **, *** denote statistical significance at the  10,

5 and 1 per cent level, respectively.
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square error (RMSE) is used to assess the magnitude of error of the
exchange rate forecasts. The RMSE of the model forecasts is calculated
as follows:

(16) 2

1

1 ˆ
n

t t
t k

RMSE s s
n k  

 
 

where  is the realised exchange rate at time t and  is the forecast ofts t̂s
the exchange rate at time t. The root mean square error of the random
walk is calculated as:

(17) 2
1

1

1 n

t t
t k

RMSE s s
n k 

 
 

 

Unlike Meese and Rogoff (1983), a formal test for the statistical
difference in the RMSE of the model and the random walk is undertaken
using the AGS test, as suggested by Ashley, Granger and Schmalensee
(1980). This test requires estimation of the linear regression:

(18) 0 1t t tD M M u    

where , ,  is the mean of M,  is the1 2t t tD w w  1 1 2t tM w w  M 1tw
forecasting error at time t of the model with the numerically higher
RMSE and  is the forecasting error at time t of the model with the2tw
numerically lower RMSE. If the sample mean of the errors is negative,
the observations of the series are multiplied by –1 prior to running the
regression. The estimates of the intercept term ( ) and the slope ( )0 1
from equation (18) are used to test the statistical difference between the
RMSEs of two different models. If  and  are both positive, then0 1
a Wald test of the joint null hypothesis  is appropriate.17 0 0 1: 0H   

The Diebold and Mariano (1995) test is employed to evaluate
whether the forecasts produced by the random walk and exchange rate
model exhibit equality in their respective forecasting errors, as
measured by a loss function. To calculate the Diebold and Mariano test

17. However, if one of the estimates is negative and statistically significant, then the test
is inconclusive. But if one of the coefficients is negative and statistically insignificant the test
remains valid (although significance is determined by the upper-tail of the t-test on the
positive coefficient estimate).
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statistic, the accuracy of each forecast is measured by the loss function:

(19)   1 1| 1|, i i
t t t t tL s s L   

where s is the log of the exchange rate, ε is the error term and i takes a
value of 1 or 2 and represents the model and random walk forecasts,
respectively. The null hypothesis that the models have equal predictive
accuracy is represented as:

(20)   1 2
0 1| 1|: t t t tH E L E L        

or alternatively:

(21) 0 : 0tH E r 

where the loss differential is defined as:

(22)   1 2
1| 1|t t t t tr L L   

The Diebold-Mariano test statistic is calculated as:

(23)
 1/2

r

rDM
LRV

n k




where:

(24)
1

1 n

t
t k

r r
n k  


 

and:

(25)0
1

2
n

r j
j k

LRV  
 

  

where  is the variance of the loss differential ( ) and  is the0 tr j
covariance between  and .The null hypothesis of equal predictivetr t jr 
accuracy is rejected at the 5 per cent level if  |DM|>1.96. A two-tailed
test is used such that the alternative hypothesis is that the expected
value of the loss differential is non-zero. If the null hypothesis is
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rejected, the sign of the test statistic indicates whether the model
forecasts produce a statistically larger or smaller loss differential.18  

C. Direction accuracy

Direction accuracy is defined as the proportion of times the forecast
correctly predicts the direction of change of the exchange rate. The
calculation of direction accuracy takes the form:

(26)
1

1 n

t
t k

DA
n k


 


 

where:

 if (27)
1
0

  


  
  

1 1

1 1

ˆ 0
ˆ 0
t t t t

t t t t

s s s s
s s s s
 

 

  
   

Whether the direction accuracy of the model forecasts exceeds that of
the random walk is tested under the null hypothesis  against0 :H DA 
the alternative .19  The test statistic is as follows:1 :H DA 

(28)
   1 /

DAz
DA DA n k


 

Initially, the parameter is set to , such that the test becomes that0 
of the model against the random walk without drift (because this is a no

18. That is, a negative test statistic which is statistically significant indicates that the
model outperforms the random walk (and vice versa). A two-tailed test is preferable over a
one-tailed test because it enables a determination of whether the model or random walk have
equal accuracy and, if not, which is superior in terms of forecasting accuracy as measured by
the loss differential.

19. If forecasting accuracy is to be assessed according to direction accuracy, the question
arises as to what is the appropriate benchmark value against which the direction accuracy of
forecasts should be assessed. Most studies that include direction accuracy as a criterion to
assess forecasting performance consider whether or not direction accuracy (DA) exceeds zero,
implying that the benchmark is the random walk without drift. In contrast, Cheung, Chinn and
Pascual (2005) erroneously use the higher benchmark of DA = 0.5 to assess the direction
accuracy of the forecasts on the basis that the random walk “predicts the exchange rate has
an equal chance to go up or down”. Evans and Lyons (2005) state explicitly that if the ex-ante
forecast follows a random walk without drift, “there is no forecast change in the spot rate.”
Hence, a random walk without drift has nil direction accuracy and the appropriate null
hypothesis to be tested is H0 : DA = 0  rather than H0 : DA = 0.5.
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change forecast and, therefore, has nil direction accuracy). As a
supplementary test, the parameter is also set at   to assess if the0.5 
model correctly predicts the direction of change on at least 50 per cent
of occasions.

The Pesaran and Timmermann (1992) test is used as a further test of
direction accuracy of the model forecasts. The PT test is a
non-parametric test of association between two variables that is used to
test for independence between the predicted and actual change in the
exchange rate. The null hypothesis is that there is no predictable
relationship between the predicted and actual change (that is, the
variables are statistically independently distributed). The PT test
statistic is calculated as follows:

(29)    
1

2
* *

*
1 ˆP PPT P P

n k


 


where  is the proportion of times that the direction of change isP̂
predicted correctly,  and bt and ct represent the actual * Pr 0t tP b c  
and predicted change, respectively.

D. Magnitude and direction accuracy

The adjusted root mean square error (ARMSE) is constructed by
adjusting the conventional RMSE to take into account direction

TABLE 4. ADF test for stationarity in the model residuals

CAD/AUD GBP/AUD CAD/GBP CAD/USD GBP/USD GBP/JPY

Frenkel-
Bilson –11.55*** –12.05*** –13.12*** –10.21*** –10.66*** –12.37***
H(107)

Dornbusch-
Frankel –11.41*** –12.28*** –12.72*** –9.98*** –11.11*** –12.07***
H(106)

Hooper-
Morton –12.47*** –10.88*** –13.19*** –11.99*** –10.04*** –12.50***
H(105)

Note:  The lag length was selected by using SIC (Modified SIC for ERS & Ng-Perron)
values. The unit root tests are performed with the assumption of constant term in the
logarithm of the series, with the null hypothesis of unit root. An * , **, *** denote statistical
significance at the 10, 5 and 1 per cent levels, respectively.
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accuracy. If two models have equal RMSEs, the model with the higher
confusion rate (CR) has a higher ARMSE. The formula for the ARMSE
is as follows:

(30) 2

1
ˆ

n

t t
t k

CRARMSE s s
n k  

 
 

where CR is the confusion rate, calculated as:

(31)1CR DA 

A useful property of the ARMSE as defined by equation (30) is that
it is not biased towards measures of either magnitude (RMSE) or
direction (CR).20 Despite the unavailability of a formal test for whether
the difference between two ARMSEs is statistically different, if either
the corresponding differences in the RMSEs or DA are statistically
different, it can be inferred that the ARMSEs are also statistically
different.

Following Moosa and Burns (2013b), the proximity of the forecasts
to a perfect forecast is also tested. This approach is used to jointly
assess forecasting accuracy in terms of the magnitude of error and
direction accuracy. Errors in magnitude and direction are jointly

TABLE 5. Breusch-Pagan test for heteroscedasticity

CAD/AUD GBP/AUD CAD/GBP CAD/USD GBP/USD GBP/JPY

Frenkel-
Bilson 0.83 0.39 0.57 6.31* 0.53 0.92

Dornbusch-
Frankel 0.81 0.42 0.53 6.23* 0.50 0.91

Hooper-
Morton 0.18 0.07 0.58 0.50 0.49 0.88

Note:  Test statistic is distributed approximately as F(h,h). The value of h is 107, 106 and
105 for the Frenkel-Bilson, Dornbusch-Frankel and Hooper-Morton models, respectively. The
critical value is 1.38 at the 5 per cent level. An asterisk indicates statistical significance at the
5 per cent level.

20. By using simulated data, Moosa and Burns (2012a) show that the rank correlation
between ARMSE and RMSE and between ARMSE and CR are close in value at 0.571 and
0.551, respectively.
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measured by the deviation of the line of best fit associated with a
regression of the predicted change on the actual change, compared to a
perfect forecast. The line of best fit has the general equation

 and a set of perfect forecasts has the 1 1
ˆ

t t t tS S S S     
restriction that . Any violation of the coefficient   , 0,1  
restrictions defining the line of perfect forecast implies less than perfect
forecasts, invariably involving magnitude and direction errors. A Wald
test of the joint coefficient restriction is conducted to determine if the
violation is statistically significant as implied by the statistic. If both2
the model and random walk violate this condition, relative forecasting
superiority can be assessed by comparing the numerical value of the 2
statistic. That is, the bigger the value of the Wald test statistic, the
greater the violation of the coefficient restriction and the worse the
model is with respect to predictive power, as judged by magnitude and
direction. For the random walk to outperform the model it must produce
a smaller test static relative to the model.21 Evans and Lyons (2005)
propose a similar test which only assesses whether β = 1. The test
proposed by Moosa and Burns (2013b) has a higher threshold and is
therefore adopted in this study.

E. Profitability 

In this study, profitability is measured by mean returns and the Sharpe
ratio. Profitability is the rate of return generated from period-by-period
trading using two alternative strategies: pure carry trade and
forecasting-based trading. In forecasting-based trading, the investment

TABLE 6. Durbin-Watson test statistics

CAD/AUD GBP/AUD CAD/GBP CAD/USD GBP/USD GBP/JPY

Frenkel-
Bilson 1.99 2.13 2.18 1.98 2.05 2.02

Dornbusch-
Frankel 1.99 2.17 2.14 1.95 2.09 2.05

Hooper-
Morton 2.73 2.49 2.73 2.80 2.08 2.04

21. Following the methodology of Moosa and Burns (2013b), the forecasts of the random
walk model must be estimated using OLS so that a Wald test can be conducted.
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decision depends on the forecast percentage change in the exchange rate
and the expected return. By taking a short position on currency x and a
long position on currency y, the expected return, f e, is defined as:

(32) , , 1
ˆe e

y t x t tf i i S   

where is the expected percentage change in the exchange rate, isˆ eS yi
the interest rate on currency y and is the interest rate on currency x.xi
The decision rule is to take a short position on x and a long position on
y if the expected return is positive, and vice versa. The realised return
from forecasting-based trading is given by:

   if   (33)
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In a carry trade exercise where the drift factor is insignificant, the
investment decision depends on the interest rate differential alone (since
the random walk implies that ). This involves taking a long1

ˆ 0e
tS  

position on the high interest currency and a short position on the low
interest currency. The realised return on a carry trade operation is
therefore given by:22

TABLE 7. Box-Ljung Q-statistics (16,14)

CAD/AUD GBP/AUD CAD/GBP CAD/USD GBP/USD GBP/JPY

Frenkel-
Bilson 13.66 17.79 45.07* 27.12* 13.35 14.59

Dornbusch-
Frankel 14.80 13.93 45.96* 26.95* 11.09 13.06

Hooper-
Morton 101.99* 43.83* 66.17* 72.77* 13.47 9.95

Note:  The Box-Ljung Q-statistic is based on the first 16 residual autocorrelations and
is distributed approximately as a chi squared distribution with 14 degrees of freedom. The
critical value at the 5 per cent level is 23.68. An asterisk indicates statistical significance at
the 5 per cent level.

22. Where the drift factor is statistically significant, profitability is calculated on a
modified carry trade operation where the assumption is that the exchange rate is expected to
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   if   (34)
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Once profitability is measured, the mean value of the return is given by:

(35)
1

1 n

t
t k

f f
n k  


 

A conventional test of the difference between two means (i.e. the mean
returns) is also performed. The null hypothesis of equality in mean
returns is rejected if:

(36) 
1 2

2
1 1
f f t n k n k

s
n k n k

     


 

where superscripts 1 and 2 represent the model and random walk,
respectively, and:

TABLE 8. Normality test statistics

CAD/AUD GBP/AUD CAD/GBP CAD/USD GBP/USD GBP/JPY

Frenkel-
Bilson 10.58* 26.75* 12.20* 164.11* 12.57* 19.09*

Dornbusch-
Frankel 8.85* 27.14* 5.63 157.79* 10.69* 24.80*

Hooper-
Morton 65.46* 37.81* 4.96 13.30* 1.01 23.76*

Note:  The normality test statistics follow a chi squared distribution and have a critical
value of 5.99 at the 5 per cent level, with two degrees of freedom. An asterisk indicates
statistical significance at the 5 per cent level.

change by the drift factor. In this case, the expected return is calculated by replacing the
forecast percentage change in the exchange rate with the drift factor, which gives:

. The   realised   return   from   a   carry   trade   strategy,   where   the   drift , ,
e

y t x tf i i d  

factor is statistically significant, is given by:  if . 
  , ,
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(37)
       2 1 2 21 1
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The standard deviation of the rate of return is calculated as:

(38) 2

1

1
1

n

t
t k

SD f f
n k  

 
  

The Sharpe ratio measures risk-adjusted returns. Following Burnside et
al. (2010) and Gyntelberg and Remolona (2007), the Sharpe ratio is
calculated as the ratio of the mean to the standard deviation of the rate
of return:

(39)fSR
SD



IV. Data and empirical results

A. Data

The empirical work of this study is performed on six exchange rates,
two against the US dollar (CAD/USD and GBP/USD) and four cross

TABLE 9. Proportion of variation in exchange rate accounted for by trend and cycle

CAD/AUD GBP/AUD CAD/GBP CAD/USD GBP/USD GBP/JPY

Frenkel-
Bilson 54.43 42.82 61.35 20.67 70.51 45.45

Dornbusch-
Frankel 49.49 32.03 56.28 19.82 64.53 41.87

Hooper-
Morton 42.66 25.49 46.05 14.07 44.94 37.56

Note:  Calculated as the amount of variation in the exchange rate explained by the trend
and cycle components, as a proportion of the amount of variation explained by the full model
specification as described in equations (1) to (3) (as measured by the coefficient of
determination).
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rates (CAD/AUD, CAD/GBP, GBP/AUD and GBP/JPY).23 The sample
spans the period from January 1984 to June 2011 and all data is sourced
from International Financial Statistics (CD-ROM), published by the
International Monetary Fund. Monthly data frequencies are used and,
where a time series is only available on a quarterly frequency (for
example, GDP for all countries and CPI for some countries), the data is
converted into a monthly time series using a continuous time-dynamic
interpolation method (Moosa and Burns, 2012b). The models (as
specified in equations (1) to (3)) are estimated from January 1984 to
June 2001, and one month ahead out-of-sample forecasts are generated
from July 2001 to June 2011.

B. Diagnostic testing

A range of diagnostic tests performed on the standardised residuals
generated from the monetary model forecasts endorse the estimation of
the models in state-space form conducted in this study. Unit root testing
reports that the residuals are stationary in every instance (table 4).24  The

TABLE 10. Root mean square error and hypothesis testing

CAD/AUD GBP/AUD CAD/GBP CAD/USD GBP/USD GBP/JPY

Random
walk 0.029 0.030 0.030 0.029 0.027 0.036

Frenkel- 0.029* 0.032* 0.036** 0.030** 0.029 0.034
Bilson (0.0993) (0.0583) (0.0004) (0.0185) (0.2982) (0.6318)

Dornbusch- 0.029 0.032** 0.034** 0.031*** 0.029 0.035
Frankel (0.2670) (0.0274) (0.0148) (0.0116) (0.3969) (0.9372)

Hooper- 0.053*** 0.054*** 0.046*** 0.048*** 0.037*** 0.036
Morton (0.0000) (0.0000) (0.0000) (0.0000) (0.0000) (0.9807)

Note:  The AGS test statistic follows a chi square distribution. P-values are in
parentheses and *, **, *** denote statistical significance at the 10, 5 and 1 per cent level,
respectively.

23. The currencies selected account for 86 per cent of global currency turnover (Bank
for International Settlements, 2013).

24. Only the ADF test results are presented here for the purposes of simplicity.
Additional unit root test results (using the Phillips-Perron, Kwiatkowski-Phillips-Schmidt-
Shin, Elliott-Rothenberg-Stock Point Optimal and modified Ng-Perron unit root tests) are
available from the author upon request.
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FIGURE 1.— Time plots

Breusch-Pagan test reveals that, in almost every case, the null
hypothesis of homoscedasticity cannot be rejected (table 5). Although
the assumption that the residuals are homoscedastic impacts the validity
of statistical tests and confidence intervals associated with the
regression model, there is no reason that this will detrimentally impact
forecasting accuracy (Makridakis, Wheelwright and Hyndman, 1998).
Therefore, even in the very small number of cases where the errors are
heteroscedastic, this is not fatal to the analysis. The Durbin-Watson
statistic reveals little evidence of positive or negative autocorrelation at
lag one in the standardised residuals (table 6). For completeness, the
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Ljung-Box Q-statistics are also presented (table 7). Again, the results
show that there is no autocorrelation in the residuals in the majority of
cases. The Doornik and Hansen (2008) test is used to test for normality
in the standardised residuals and the null hypothesis of normally
distributed standardised errors cannot be rejected in three of the 18
cases (table 8). This finding is not a cause for concern because a
regression model may still be robust, even if the errors are non-normal
(Osborne and Waters, 2002). 

As a further exercise, table 9 reports the amount of variation in the
exchange rate that can be explained by the full model specification (as
described in equations (1) to (3)) compared to the amount of variation
in the exchange rate that can be explained by the trend and cycle
components only.25 On average, more than half of the variation in the
exchange rate explained by equations (1) to (3) is attributable to the
economic fundamentals. In other words, the trend and cycle components
account for less than half of the total variation in the exchange rate
which is explained by the exchange rate determination models. 

C. Out-of-sample forecasts

Figure 1 presents the time plots of the out-of-sample forecasts of the
random walk and the Dornbusch-Frankel model, estimated with

TABLE 11. Diebold and Mariano test results

CAD/AUD GBP/AUD CAD/GBP CAD/USD GBP/USD GBP/JPY

Frenkel- 1.97** 2.28** 0.94 1.11 1.17 –0.51
Bilson (0.0512) (0.0245) (0.3507) (0.2700) (0.2425) (0.6110)

Dornbusch- 0.55 2.20** 0.97 1.18 0.99 –0.50
Frankel (0.5814) (0.0299) (0.3350) (0.2391) (0.3237) (0.6180)

Hooper- 3.17*** 5.08*** 4.36*** 3.19*** 1.63 –0.01
Morton 42.66 25.49 46.05 14.07 44.94 37.56

Note:  The Diebold-Mariano test statistic follows a t-distribution. P-values are in
parenthesis and *, **, *** denote statistical significance at the 10, 5 and 1 per cent level,
respectively.

25. Calculated as the amount of variation in the exchange rate explained by the trend and
cycle components only, as a proportion of the amount of variation explained by the full model
specification as described in equations (1) to (3) (as measured by the coefficient of
determination).
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time-varying parameters for each of the cross rates.26 It is evident from
these time plots that the actual exchange rate, the random walk forecasts
and the exchange rate model forecasts are almost indistinguishable.
Based on a visual inspection, both the model and random walk appear
to provide a good approximation of the actual exchange rate. In the next
section, the competing forecasts are assessed using conventional and
alternative measures of forecasting accuracy, as presented in section III. 

D. Conventional measures of forecasting accuracy 

When forecasting accuracy is measured by conventional means (that is,
by the magnitude of error only), the results reinforce the Meese-Rogoff

TABLE 12. Direction accuracy and hypothesis testing

CAD/AUD GBP/AUD CAD/GBP CAD/USD GBP/USD GBP/JPY

Frenkel-
Bilson 0.5210 0.5462 0.5966 0.5210 0.5042 0.5882
H0: DA
= 0.00 (11.42) (12.02) (13.32) (11.42) (11.05) (13.09)
H0: DA
= 0.50 (0.46) (1.02) (2.16) (0.46) (0.09) (1.96)

Dornbusch-
Frankel 0.5210 0.5294 0.5966 0.5126 0.4958 0.6471
H0: DA
= 0.00 (11.42) (11.62) (13.32) (11.23) (10.86) (14.83)
H0: DA
= 0.50 (0.46) (0.65) (2.16) (0.28) (–0.09) (3.37)

Hooper-
Morton 0.4202 0.5210 0.5126 0.4874 0.4202 0.6387
H0: DA
= 0.00 (9.33) (11.42) (11.23) (10.68) (9.33) (14.56)
H0: DA
= 0.50 (–1.77) (0.46) (0.28) (–0.28) (–1.77) (3.16)

Note:  The critical value of the t-test statistic at the 5 per cent level of significance is
1.96. Test statistics are in parentheses.

26. The time plots have been presented for all cross rates and only for the
Dornbusch-Frankel model. There are two reasons for this. First, the time plots of the other
model forecasts are extremely similar and presenting all 18 time plots would provide no real
additional information to the reader. Second, in an exercise like this where a number of
currencies and models are considered, the author must necessarily be selective about what
evidence is presented.
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findings and show that no exchange rate model can produce a
statistically smaller RMSE compared to the naïve model forecasts (table
10).  In around half of the cases, the RMSE of the model and random
walk are numerically the same (to three decimal places). Even where the
model produces a slightly higher or smaller numerical RMSE, the AGS
test proves the RMSEs are not statistically different in most cases.

These findings demonstrate the pitfalls of reaching conclusions
about relative forecasting accuracy by comparing the numerical value
of the RMSE. Just because the RMSEs are numerically different does
not imply that they are statistically different. More importantly, the
results show that exchange rate models estimated using time-varying
parameters often produce a magnitude of forecasting error equivalent to
the naïve random walk model. This overturns the suggestion by Meese
and Rogoff (and others) that exchange rate models incorporating
stochastic movements in parameters may be able to outperform the
random walk in terms of the RMSE. The results also dismiss stochastic
movements in parameters as a possible explanation for the
Meese-Rogoff puzzle. Likewise, the Diebold and Mariano (1995) test
proves that exchange rate models forecasts generated using a TVP
framework produce an equivalent magnitude of error to the random
walk (table 11). That is, there is no statistical difference in the loss
function of the model and random walk forecasts. The exchange rate
models perform best for the GBP/USD and GBP/JPY rates, where the
null hypothesis of equality in the loss function cannot be rejected for all
three models. Based on these results, the proposition that the random
walk is superior to exchange rate models in terms of the magnitude of

TABLE 13. PT Test for direction accuracy

CAD/AUD GBP/AUD CAD/GBP CAD/USD GBP/USD GBP/JPY

Frenkel- 1.24 –1.70 1.61 2.28 1.12 1.28
Bilson (0.2662) (0.1919) (0.2045) (0.1309) (0.2906) (0.2586)

Dornbusch- 0.82 –1.04 0.94 2.10 1.97 2.64*
Frankel (0.3646) (0.3078) (0.3334) (0.1476) (0.1606) (0.1041)

Hooper- –1.84 –0.50 –1.28 1.10 –0.98 3.47*
Morton (0.1750) (0.4799) (0.2579) (0.2938) (0.3231) (0.0625)

Note:  The PT test statistic follows a chi squared distribution and has a critical value of
3.84 at the 5 per cent level of significance, with one degree of freedom. P-values are also
presented in parenthesis and *, **, *** denote statistical significance at the 10, 5 and 1 per
cent level, respectively.
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forecasting error is not supported. However, this does not infer that the
model forecasts are able to outperform the random walk in terms of the
RMSE. 

Two conclusions can be reached on the basis of these results. First,
parameter instability as a possible explanation for the Meese-Rogoff
puzzle is entirely discounted because exchange rate models estimated
with time-varying parameters cannot produce a statistically smaller
RMSE compared to the random walk. Second, the random walk is
unable to outperform exchange rate models if these models are
estimated using time-varying parameters. This is demonstrated by
showing that the small difference in the RMSEs of the model and
random walk is not statistically significant.

E. Alternative measures of forecasting accuracy 

The direction accuracy and hypothesis testing results verify the
proposition that the random walk can be outperformed when exchange
rate models are estimated using TVP, and forecasting accuracy is
assessed by alternative measures (table 12). In all cases, the model
outperforms the random walk because the null hypothesis of nil
direction accuracy is rejected (and the random walk without drift is a no
change forecast and, therefore, implies nil direction accuracy). This
demonstrates that the Meese-Rogoff puzzle can be overturned if
forecasting accuracy is assessed by direction accuracy and the exchange
rate models are estimated with TVP. More importantly, the
supplementary test results show that the model correctly predicts the

TABLE 14. Mean return and hypothesis testing

CAD/AUD GBP/AUD CAD/GBP CAD/USD GBP/USD GBP/JPY
Random
walk 6.14 7.97 –1.57 0.94 0.94 –0.77

Frenkel- 6.39 9.73 2.64 1.50 1.67 5.78
Bilson (0.9556) (0.7101) (0.3664) (0.9017) (0.8623) (0.2519)

Dornbusch- 6.39 9.25 5.51 1.37 3.53 8.43
Frankel (0.9556) (0.7873) (0.1287) (0.9237) (0.5384) (0.1067)

Hooper- 1.98 2.48 1.79 2.14 1.26 8.79*
Morton (0.3520) (0.2535) (0.4714) (0.7904) (0.9405) (0.0935)

Note:  P-values for the null hypothesis H0:  πM = πRW are presented in parenthesis and *,
**, *** denote statistical significance at the 10, 5 and 1 per cent level, respectively.
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direction of change on at least 50 per cent of occasions in all cases. In
some cases, direction accuracy of the model forecasts actually exceeds
50 per cent (four cases relating to CAD/GBP and GBP/JPY). 

The conclusions drawn from the direction accuracy results
corroborate the PT test results (table 13). The PT test rejects the null
hypothesis of independence between the actual and predicted change in
the exchange rate in two cases, both relating to the GBP/JPY. These are
the same cases where direction accuracy exceeds 60 per cent. The
results suggest that direction accuracy of at least 60 per cent is
necessary for there to be a statistical relationship between the actual
movement in the exchange rate and the change predicted by the model.
In the majority of cases, however, the actual and predicted changes are
statistically independent. The reason for this is that the PT test has a
higher threshold than the t-test on direction accuracy and this highlights
the importance of using a wide variety of measures to assess forecasting
accuracy.

The mean returns and hypothesis testing results are presented in
table 14. In almost every case, the model outperforms the random walk
based on the numerical mean return (either a larger positive return or a
smaller negative return). Nonetheless, hypothesis testing
overwhelmingly shows that the mean returns of the random walk and
model are not statistically different. This is largely due to the high
variance in both the model and random walk forecasts and is most likely
attributable to the lengthy sample used in this study. Notwithstanding
this, the results show that the random walk is not superior to exchange
rate models when forecasting accuracy is measured by profitability. The
Sharpe ratio results, however, lend overwhelming support to the

TABLE 15. Sharpe ratio

CAD/AUD GBP/AUD CAD/GBP CAD/USD GBP/USD GBP/JPY
Random
walk 0.18 0.22 –0.04 0.03 0.03 –0.02

Frenkel-
Bilson 0.19 0.27 0.07 0.04 0.05 0.13

Dornbusch-
Frankel 0.19 0.25 0.15 0.04 0.11 0.19

Hooper-
Morton 0.06 0.07 0.05 0.06 0.04 0.20
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superiority of the monetary models over the random walk (table 15). In
almost every instance, the forecasts generated by the TVP models
generate a larger risk-adjusted return compared to the random walk.
Therefore, when forecasting accuracy is measured by risk-adjusted
returns, the random walk model is easily outperformed by exchange rate
determination models estimated in state-space form. 

The ARMSE results verify the proposition that the random walk is
outperformed by exchange rate models estimated with time-varying
parameters when forecasting accuracy is assessed in terms of both errors
in magnitude and direction (table 16). In almost every instance, the
model performs as well as, or better than, the random walk in terms of
the ARMSE. Most noteworthy are the results for the GBP/JPY where
the error of the random walk forecast is 50 per cent larger than that of
the model forecasts. The results prove that by taking errors in both
magnitude and direction into account, the forecasts generated by
monetary models estimated in a TVP framework are superior to the
random walk, and the Meese-Rogoff puzzle can be overturned. 

The results of the Wald test for proximity to a perfect forecast
further support the proposition that the random walk model can be
outperformed by exchange rate models estimated with time-varying
parameters (table 17). Recall that the Wald test statistic measures the
deviation of the forecasts from the perfect forecast. As the model
forecasts have a much lower Wald test statistic compared to the random
walk for every currency and model, this means that the model forecasts
deviate from the perfect forecast by a lesser amount relative to the
random walk forecasts. In fact, the random walk forecasts report a Wald
test statistic that is between 34 and 3,416 times that of the exchange rate

TABLE 16. Adjusted root mean square error

CAD/AUD GBP/AUD CAD/GBP CAD/USD GBP/USD GBP/JPY
Random
walk 0.029 0.030 0.030 0.029 0.027 0.036

Frenkel-
Bilson 0.020 0.021 0.023 0.021 0.020 0.022

Dornbusch-
Frankel 0.020 0.022 0.022 0.021 0.020 0.021

Hooper-
Morton 0.040 0.038 0.032 0.035 0.028 0.022
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model forecasts. Although the null hypothesis that the forecasts are
perfectly accurate is rejected in every case, the large numerical
differences in the Wald test statistic demonstrates the superiority of
exchange rate models estimated using TVP compared to the random
walk.

V.  Discussion

The Meese-Rogoff puzzle posits that the random walk cannot be
outperformed by exchange rate determination models in out-of-sample
forecasting. Time-varying parameters have been suggested by Meese
and Rogoff (1983) and others as a possible explanation for this result.
Another reason put forward in more recent literature is that forecasting
accuracy is traditionally assessed by conventional approaches that
exclusively measure the magnitude of the forecasting error. The results
of this study prove that estimating the monetary model of exchange rate
determination using time-varying parameters does not, by itself, resolve
the Meese-Rogoff puzzle. That is, the model forecasts are unable to
produce a smaller and statistically different magnitude of forecasting
error compared to the random walk forecasts. In the majority of cases,
however, there is no statistical difference in the RMSE of the exchange
rate model and random walk forecasts. Therefore, the models and
random walk have equivalent forecasting accuracy as measured by the
RMSE, if the models are estimated using TVP. On this basis, it can be
concluded that parameter stability cannot explain the Meese-Rogoff

TABLE 17. Test for proximity to perfect forecast

CAD/AUD GBP/AUD CAD/GBP CAD/USD GBP/USD GBP/JPY
Random
walk 2857.40 2057.40 3213.10 201317.00 2525.90 22047.70

Frenkel-
Bilson 1912.30 1902.50 302.42 571.86 261.51 272.94

Dornbusch-
Frankel 1313.90 1275.60 352.58 533.58 234.23 66.36

Hooper-
Morton 72.87 60.91 67.13 58.94 75.24 133.12

Note:  The test statistic follows a chi squared distribution and has a critical value of 5.99
at the 5 per cent level of significance, with two degrees of freedom.
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puzzle. However, incorporating stochastic movements in the parameters
evidently brings about a vast improvement in the accuracy of the model
forecasts to the extent that the random walk does not produce a superior
forecast as measured by the RMSE. In fact, the gains arising from using
a TVP framework are so substantial that the model and random walk
forecasts generate statistically equivalent RMSEs.

The inability of monetary models of exchange rate determination to
outperform the random walk in terms of the RMSE, even when
estimated in state-space form, warrants further discussion. Some
economists suggest that exchange rates are forward-looking and reflect
market participants’ expectations of both current and future
fundamentals, often with a greater weight being placed on future
economic fundamentals (see, for example, Bachetta and van Wincoop,
2011; Engel and West, 2005). The forward looking nature of exchange
rate movements effectively disconnects the exchange rate from current
economic fundamentals and, hence, monetary models of exchange rate
determination perform poorly in terms of the magnitude of error.
Alternatively, it has been suggested that unobserved shocks (such as
structural instability as a result of policy changes) are the primary
drivers of exchange rate movements and (as they are unobservable) are
unable to be incorporated into exchange rate models (see, for instance,
Balke, Ma and Wohar, 2013). However, both of these considerations are
taken into account by adopting the unobserved components model used
in this study (Koopman et al., 2006). Therefore, neither of these
suggestions can adequately explain why exchange rate models cannot
outperform the random walk in terms of the RMSE. The reason that
exchange rate models estimated using time-varying parameters cannot
outperform the random walk is that the period to period change in the
exchange rate (which is by definition the error of the random walk) is
so small that it is almost impossible for a model to produce forecasts
with a statistically smaller magnitude of error unless the model produces
a perfect forecast with nil error. It is for this reason that Engel, Mark
and West (2008) suggest that beating the random walk in terms of the
RMSE is “too strong” a criterion. 

However, if forecasting accuracy is measured by any metric that
does not exclusively rely on the magnitude of error, the random walk
can be outperformed by exchange rate models estimated in state-space
form in out-of-sample forecasting. The model forecasts are capable of
outperforming the random walk forecasts in terms of direction accuracy,
measures that take into account magnitude and direction (ARMSE),
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risk-adjusted returns and proximity to a perfect forecast. When criteria
other than the magnitude of error are considered, it is not difficult for
the model forecasts to outperform the random walk. The reason is that
the random walk by definition predicts no period-to-period change in
the exchange rate, whereas the exchange rate model predicts a change
in the exchange rate based on macroeconomic fundamentals. Although
the random walk and model perform equivalently in terms of the RMSE,
the model forecasts are so superior in terms of direction accuracy that,
when both magnitude and direction accuracy are taken into account, the
model overwhelmingly outperforms the naïve random walk model.
Therefore, by reconsidering the Meese-Rogoff puzzle using alternative
measures of forecasting accuracy (that do not rely exclusively on the
magnitude of error), the results show that the random walk can be
outperformed by exchange rate models estimated with time-varying
parameters.  

By using six alternative measures of forecasting accuracy, this study
has unquestionably demonstrated that the Meese-Rogoff puzzle can be
overturned if forecasting accuracy is measured by metrics that take into
account other important characteristics of forecasting accuracy. No
other study utilises such a wide variety of alternative measures of
forecasting accuracy to demonstrate the robustness of the proposition
that the Meese-Rogoff puzzle can be overturned by using measures of
forecasting accuracy that do not rely exclusively on the magnitude of
error. In addition, the results show that the naïve random walk model,
and monetary models estimated in state-space form, produce equivalent
errors in magnitude. The findings demonstrate the gains arising from
estimating exchange rate models in a TVP framework over and above
the random walk model. In addition, these results support three
conclusions. First, parameter instability cannot explain the
Meese-Rogoff puzzle because incorporating stochastic movements in
the parameters does not enable the model to produce a statistically
smaller RMSE compared to the naïve model. Second, if the
Meese-Rogoff puzzle is reconsidered by assessing forecasting accuracy
using alternative measures that do not rely exclusively on the magnitude
of error, the random walk can be outperformed. Third, the forecasts
produced by exchange rate determination models estimated in a TVP
framework are more useful than those of the random walk and there are
significant gains to using exchange rate models for out-of-sample
forecasting. 
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VI.  Conclusion 

This study comprehensively demonstrates that the Meese and Rogoff
(1983) findings cannot be overturned by incorporating stochastic
movements in the parameters of monetary models of exchange rate
determination. That is, exchange rate models estimated in a TVP
framework cannot produce a numerically smaller and statistically
different magnitude of error compared to the random walk. This
empirical result is to be expected because of the nature of exchange rate
volatility. This does not mean that the random walk produces a superior
forecast, or that macroeconomic fundamentals cannot predict
movements in bilateral exchange rates. There are substantial benefits to
be gained by estimating exchange rate models using a TVP framework,
evinced by the superiority of the model forecasts over and above the
random walk in terms of direction accuracy, profitability, proximity to
a perfect forecast and the ARMSE. In addition, a model estimated using
TVP can produce an equivalent RMSE to the random walk, meaning
that the gains obtained in using a TVP model to forecast exchange rates
comes at no cost in terms of the magnitude of forecasting error. The
findings prove that the Meese-Rogoff puzzle can be overturned by using
any alternative measure of forecasting accuracy that does not rely
exclusively on the magnitude of error, and by incorporating stochastic
movements in the parameters of the model.

Accepted by:   P.C. Andreou, PhD, Editor-in-Chief (Pro-Tem), November 2015
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