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This article documents the stochastic properties of bivariate returns to
international stock market indices. In particular, the article searchesfor the best
fit among a class of higher-order VARMA (u,v)-EGARCH(p,q) models with
normal errors and a constant conditional correlation using MSCI domestic and
world-ex-domesticindex pairsfor the Emu, Japan, the United Kingdom, and the
United States. Although afirst-order VAR or VMA specification is sufficient
to accommodate the conditional means, second-order EGARCH terms are
necessary in two of the four bivariate series (JEL: G15 G11 C15 C34).
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|. Introduction

This article examines the stochastic properties of bivariate daily returns
tothe M SCI domestic and world-ex-domestic stock market index pairsfor
the Emu, Japan, the United Kingdom, and the United States. In particular,
the article examines whether higher-order terms are necessary in these
series by searching for the best fit among the class of bivariate
VARMA(u,v)-EGARCH(p,g) models with a constant conditional
correlation and normally distributed errors using conditional mean and
volatility terms at lags of up to three days. First-order terms are usually
sufficient to capturethe conditional mean and volatility of univariateprice
series (Engle [1993]). First-order models have a more straightforward
economic interpretation than higher-order models, and are easier to
congtruct (He, Terdsvirta and Malmsten [2002]) and econometrically
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more tractable (He and Terésvirta[1999]). The suitability of first-order
models for bivariate returns to international indices has not been
investigated. Higher-order terms could arise for many reasons, including
technical factors such asnonsynchronous measurement of returns(Loand
MacKinlay [1990]) or behavioral factors (Hirshleifer [2001]) such as
market contagion (Bae, Karolyi and Stulz [2003]).

Higher-order conditional volatility terms are significant in half of
these bivariate series. This is about the same proportion as in the
univariate series. Although an EGARCH(1,1) model provides a
relatively good fit for bivariate U.K. and U.S. returns, second-order
EGARCH terms are useful in the Emu and Japan series. The additional
terms have significant coefficients and yield improved residual
behaviors and significant robust Wald statistics relative to the
EGARCH(1,1) model. The conditional means of these bivariate series
can be modeled equally well with first-order vector autoregressive
(VAR) or moving average (VMA) terms.

Il. Data

In order to take the perspective of a domestic investor considering the
diversification benefits of international assets, Morgan Stanley Capital
International (M SCI) value-weighted domestic and world-ex-domestic
(world return excluding domestic return) stock market indices are
employed for the Emu, Japan, the United Kingdom, and the United
States. This contrasts with most studies of international returns, which
study correl ations between national markets. The bivariate distribution
of domestic/world-ex-domestic returns is important because it
determines the diversification gains to domestic investors from
international investments.

The model is estimated using continuously compounded local
currency daily returns to MSCI official price indices for the domestic
Emu, Japanese, U.K. and U.S. markets and their corresponding
world-ex-domestic indices over the period 02/01/1996 through
12/31/2002. These four domestic markets account for about 90 percent
of total MSCI stock market capitalization. Local currency returns are
used to represent returns earned by domestic investors that are fully
hedged against currency risk. As a practical matter, the stochastic
properties of local currency and U.S. dollar returns are quite similar.

Some days in the sample period, such as national holidays, have a
zero (missing) return for adomestic index and anon-zero return for the
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corresponding world-ex-domestic index. To preserve the continuity of
the bivariate series, non-trading days in each domestic market are
aggregated onto the next trading day in that market. Returns to the
world-ex-domestic index over these periods are similarly aggregated
into asinglereturn so that the world-ex-domestic samplealignswith the
domesticindex. Thisconvention preservesthe perspectiveof adomestic
investor, for whom non-trading days in the domestic market have
volatilities that are only a small fraction of the volatilities on trading
days (French and Roll [1986]).

Descriptive statistics for each series appear in table 1. Significant
skewness and kurtosisindicate that these observed daily returns are not
normally distributed. Seven out of eight skewnessmeasuresare negative
because of a few large negative returns, and five are significant at 5
percent. All eight univariate indices are leptokurtic and significant at 1
percent. These nonnormalities guide the choice of an EGARCH
specification to accommodate volatility asymmetry, aswell asarobust
guasi-maximum likelihood estimation technique in Section I11.

Significant first-order autocorrelation is present at one percent in
each of the world-ex-domestic indices and at five percent in the Emu
index, presumably because the national markets comprising these
indices close at different times throughout the day. Six of the eight
univariate indices exhibit at least one significant second-order or
third-order partial autocorrelation, indicating that price-adjustment
delays last longer than one day in these data.

The serial cross correlations reflect the closing times of the various
domestic and world-ex-domestic markets. Japan is the first market to
open and the United Statesisthelast to close during each calendar day.
Thus, observed returnsin Japan should berelated to the previous day’ s
world-ex-Japan returns and observed U.S. returns should be related to
the next day’'s world-ex-U.S. returns. In table 1, first-order cross
correlation is indeed significant at 1 percent when the Emu (0.2062),
Japanese (0.3103), or U.K. (0.1821) index lags the corresponding
world-ex-domestic index. Thefirst-order cross correlation between the
Japanese index and the corresponding world-ex-Japan index (0.3103)
actually exceedsthe contemporaneous correlation (0.1743). First-order
serial cross correlation is only significant for the U.S. index wheniit is
paired with the next day’ sworld-ex-U.S. index (0.4006). Higher-order
serial cross correlations are insignificant, with the exceptions of two
third-order U.K. and one Emu serial cross correlations. Partial
autocorrelations and serial cross correlations at lags greater than three
are not significant in these data.



Multinational Finance Journal

130

(ponunuo)

08T00 29e0'0— S0 0— 117,00~ 19500~ 82000 920’0~ 10900~ uolep.1i0d01e
leied Jep.o-piiy L

+7780°0— 8T€0°0— 1L8V00— +9¢80°0— 10620~ 187,00~ Te0’0— L0v0°0— uolep.1iod0le
feied Joplo-puodes
1G¢T°0 €200°0 168€T°0 12200 ETT0 60€0°0 +ISTT0 1€LV0°0 uolfe pJlodoute Bp.lo-1siiH4
16¢¢’0 16T€9°0 1€V.LT°0 1£€699°0 uoep.LlIod feuoilipuodun
+¢689°T VEVY'C 11,28'T +¢090°¢ 1G9TEC 1€€9L°T 18LTT'T 10GEV'T SISOUINY SS80X3
1€VST 0~ 600T°0— VEET O 106220~ +1€8C°0— 9¢.00 280°0— 1809T°0— SSBUNVSXS
T0TO0 82100 9TT00 12100 9€T00 €100 82100 ¥ST00 uofeInep prepuess Ajed
T000°0— 20000 TO000 00000 20000 0000~ TO00'0— T000°0— uinges uesw Ajreq
(0,7A% ov.T Sv/T S/T ¢0.LT c0.LT 0ET 70ET SuoIeABSqO
'S'N-X-M SN AMN-xe-M N dr-xe-M uedter nwi3-xe- M\ nw3 xopul|

SuInPEy P e\ %00I1S [euolleuRiu|

T3navl



131

Higher-Order Termsin Bivariate Returns

"APAIRdSaI 'SP %T PUR %S T
20ueolyIUB ISBIROIPUL, pUB | S|OqUIASBY | "Z002/TE/ZT UBN0IY) 966 T/T0/20 PO BB} BN (2 11SDLIOP-X9-PIOM = A pue d isawiop =x) siexew (IS IN)
SaANDadsIad [euoireuseiu| [elideD Ao |ueis uebio woly sunpl Ajep Adualind [ea0| ‘papunodwod Ajsnonunuod uo paseq SoISIeIS 910N

96000~ WLY00- 6,000~ 52800~ (774 ) Bpao-pay L
L1100 198900~ €LT00- \STS0'0- (4 4) sepao-pay L
8000 €8€0°0~ 66200~ 9000~ ("1 1) Jopuo-puoces
Ly10'0- ¥.20°0— 68700~ 81000~  (7"*1 ™) JpIo-puoces
:9007°0 +€990°0 69900~ +1990°0 (1) Jopio-sii
T.T00- +128T’0 £0TE0 +¢902°0 (7 ™9) Jopio-sil

UOIR 0D SSO0 LIS

S'N-Xo-M SN MNNXRM N drXeeM ueder  NWI-X3-M nw3 xopu|

(PeNUNUOD) T 3T9VL



132 Multinational Finance Journal

[11. The Model

A bivariate VARMA(u,v)-EGARCH(p,g) model with a constant
conditional correlation and normally distributed errorsisadopted using
conditional mean and volatility terms of up to three lags. This class of
models is a tractable and parsimonious way to produce unconditional
return distributions that fit the characteristics of observed returns to
international stock indices, including significant autocorrelations and
serial cross correlations at higher-order lags, time-varying means and
volatilities, and asymmetric conditional volatility with relatively high
comovementsinthelower tailsof return. The assumptionsof aconstant
conditional correlation and normally distributed errors are popular
because they are conceptually simple and computationally convenient.
VARMA-in-mean terms describe the linear relation of index returnsto
recent returns and volatilitiesin that and another index.

Nelson’s (1991) EGARCH model is apopular choice for modeling
volatility asymmetry in univariate returns in which volatility tends to
increase in response to bad news (Black [1976]; Christie [1982];
Cheung and Ng [1992]). Comparisons have favored EGARCH over
competing models for stock index returns in the U.S. (Pagan and
Schwert [1990]; Kimand Kon [1994]; and Chen and Kuan [2002]), and
Japan (Engle and Ng [1993]), emerging markets (Chong, Ahmad amd
Abdullah [1999]), and small stocks (Cao and Tsay [1992]). EGARCH
also has had successin modeling theimplied option volatilities of stock
indices (Day and Lewis[1992]).

Bivariate EGARCH has been successful in capturing interactions
between aninternational stock index and another stock index (Koutmos,
Negakisand Theodossiou[1993]; Koutmos[1996]; Booth, Martikainen
and Tse [1997]; Christofi and Pericli [1999]; and Niarchos, et al.
[1999]), exchangerates (K outmos[2000]), interest rates[L obo (2000]),
and financial market liberalizations (Kassimatis [2002]); and between
interest rate futures prices (Cheung and Fung [1997]; Tse and Booth
[1996]; and Tse[1998]) and volumes (Jacobs and Onochie [1998]).

1. Alternatives to EGARCH for modeling asymmetric conditiona volatility include
(Glosten, Jaganathan and Runkle[1993]; Rabemananjara and Zakoian [1993]; and Hentschel
[1995]), contemporaneousasymmetry models(Babsiri and Zakoian [2001]), stochastic volatility
models(Wu[2001]), and regime-switching models(Hamilton[1989]; Fornari and Mele[ 1997];
and Ang and Bekaert [2002]). The EGARCH model has itself been extended in a number of
ways, such as fractionally integrated EGARCH (Bollerslev and Mikkelsen [1996] and Baillie,
Cecen and Han [2000]) and switching EGARCH (Daouk and Guo [2002]).
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A. A Univariate MA(1)-EGARCH(1,1) Baseline

Estimation results based on bivariate models indicate that first-order
VMA(L) or VAR(1) terms are sufficient for modeling the conditional
means, but that second-order terms can be beneficia in the conditional
volatilities. Moreover, ARCH-in-mean terms are not significant in the
univariate series. Consequently, MA(1)-EGARCH(1,1) and MA(1)-
EGARCH(2,2) models are estimated for each index as baselines for
evaluating the bivariate models:

=8, +Me_, +&

1
Inh =@, + @ Inh_; +@,Inh_, + 49, , + 4,9, , @
wheretheg=yz+|z|-E|z|term capturesthe asymmetric effects of positive
and negative shocks on conditional volatility. Innovationse, are assumed
to be normally distributed, such that £~N(0,h)) and z= ¢/vh, ~ N(0,1).
Parameters are jointly estimated by maximum likelihood using the
BFGS method. Maximizing a Gaussian log-likelihood function under
nonnormality yields consistent estimators called quasi-maximum
likelihood (QMLE) estimators even if the residuals are not normal

(White [1982]). For testing QMLE esti mators‘i’t , the variance-
covariance matrix must be adjusted as:

Var (¥,)=2(6567), @

where C,= 1/ T)X T4 Z (¥,), D, =<1/ MTL A (P )A (P),
A, () istheouter product gradient vector and Z, (¢) isthe Hessian matrix

of the log-likelihood function at time t, and T is the number of
observationsin the sample.

B. The Bivariate VARMA(u,v)-EGARCH(p,q) Models

Several versionsof abivariate EGARCH(p,g)-M with VARMA (u,v)-in
-the-mean model for a domestic market x and a world-ex-domestic
market y are considered,

R=A+ZL,AR +2ME , +OH +E

3
and InH, =Q,+2 Q InH__ +> AG_, ®)
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for u, v, pand q up to threelags, domestic (x) and world-ex-domestic (y)
returnsR = [r,, r,]’, innovations E, = [e,, &,,]" suchthat &, ~ N(O,h,) for
each index, autoregressive conditional log volatility vector (InH,) =[In
h,.Inh,]’, moving average volatility vector G, =[g,,; 9. 1]’ suchthat
0 =yz+lz}-E[|z]] for z=¢/vh~N(0,1) for eachindex, and ARCH-in-mean
effects ®H,. The remaining terms are parameter matrices of the
appropriate order. Following Bollerslev (1990), we assume conditional
covarianceis given by:

Ny = oy () () (4

where p,, is the constant conditional correlation betweenr, andr,.
C. Diagnostics
Ljung-Box (1978) Q statistics assess the goodness-of -fit of alternative

VARMA(u,v) conditional mean specifications. The Ljung-Box Q
statistic is defined by:

Q=T(T+2)Y, 2ok, (5)

where pfyvk are squared sample auto- or serial cross correlations at lags

fromk =1 to L. For abivariate series, the Q, statistic is asymptotically
chi-square distributed with 22 [L — (u + v)] degrees of freedom under the
null hypothesis that a particular model iswell specified.

Hosking (1980) extendsthe Q-statistic to multivariatemodels. Inthe
case of a bivariate model with a maximum lag L, the multivariate
portmanteau statistic is defined by:

F>L=T(T+2)Zt=1

(T-k)

where

Coe=T X sl B

For abivariate series, Hosking' s portmanteau statistic isasymptotically
chi-square distributed with degrees of freedom 2% [L — (u + v)] under the
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null hypothesis that the residuals are white noise. A rejection indicates
that at least one of the two bivariate seriesis not white noise. We chose
L = 20 after investigating various lags for the P and Q statistics.
Engle and Ng's (1993) joint bias test statistic is used to detect
misspecifications related to asymmetriesin the conditional volatilities.
This statistic examines whether squared normalized residuals can be
predicted by observed variables that are not included in the model:

&2 = g+ oLy + oW+ s (1- W4 )6+ 0

wherew,_; isadummy variable that takes the value 1 when the residual
£,_, isnegativeand 0 when positive. Thisjoint biastest combinesEngle

and Ng' ssignbias(p,w_,), negativesizebias (¢, W, £, , ), and positive
size bias (p; (1 -Wi_,) &,_,) tests into a single nonparametric statistic.

The null hypothesisH,: ¢ = ¢, = ¢, = p5 = 0 is evaluated with the test
statistic TR? from this regression, which is asymptotically chi-square
distributed with three degrees of freedom. If any of the ¢, are significant
based on a one-tailed test, then equation 3 is not fully predicting the
effect of the shock at time t — 1 on the conditional variance at time't.

Engle' s (1982) LM, statistic testsfor ARCH(L) disturbancesin the
residuals. LM, statistics are caculated by regressing squared
standardized residuals on aconstant and L lagged val ues of the squared
residuals. The LM, test statisticiscal culated fromthe adjusted R? of this
regression, (T —L) R?, and isasymptotically chi-square distributed with
L degrees of freedom. A lag of 4 ischosen for the LM statistic because
themodel shave at most third-order terms. If LM, issignificant based on
a one-tailed test, then the model is not fully predicting the effects of
shocks at timest — L through t — 1 on the conditional variance at timet.

For the final model, some additional tests are applied to the
conditional volatility specification. LM, statisticsat lagsof L =2, 3, and
4 test the various EGARCH specifications. Q3, statistics of the
conditional mean specification based on 20"-order autocorrelationinthe
squared standardized residualstest for volatility clustering in the final
model. Q7 statistics are simply Q, statistics applied to squared
standardized residuals and are asymptotically chi-square distributed
with 22 [L — (u + v)] degrees of freedom.

A robust Wald (1943) test is conducted to see if the VARMA and
EGARCH coefficients of order higher than 1 arejointly significant. To
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test the quasi-maximum likelihood parameter estimates 6 against
restrictions 6, , note that TY?(9 = 6,) is asymptotically normally
distributed under the null hypothesis. Squaring thisand dividing by the

variance of the estimate é yields arobust Wald statistic,

~

w=(6-6,) Ivar(8) ®)

that is asymptotically chi-square distributed with degrees of freedom
equal to the number of restrictions being tested. A significant Wald
statisticimpliesthat higher-order coefficientsarejointly significant, and
that omitting them islikely to cause biased estimation.

Finally, bivariate normality intheresidualsfromthefinal modelsare
tested with aKolmogorov test on the univariate residuals and Mardia' s
skewness and kurtosistests on the bivariate residual s. Residual s should
be able to pass these normality tests if the VARMA-EGARCH model
with normally distributed errorsiswell specified.

V. Estimation Results
A. A Univariate Baseline for the Higher-order Terms

An MA(1D)-EGARCH(1,1) model is first estimated as a baseline for
evaluating the bivariate series. The choice between an AR(1) and an
MA (1) conditional mean specification wasnot critical, aseachwasable
to account for the conditional means. Higher-order conditional mean
terms were not significant and didn’t improve model performance.

Table 2 reports parameter estimates and diagnostic statistics for the
MA(1)-EGARCH(1,1) model. All of the parameter estimates are
significant, with the exception of afew constant terms. The persistence
parameters o, , range from 0.956 to 0.983, and the news impact
parameters 4, , range from 0.057 to 0.175. EGARCH is preferred to
GARCH, asthe EGARCH asymmetry termy is hegative and significant
in each series. Although each of the series except the Emu has
non-normal residuals, the remaining diagnostic tests reveal very few
other problems. The Emu seriesis the exception, with poorly behaved
but relatively normal residuals.

Table 3 reports estimates and diagnostic statistics for each of the
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univariate series using an MA(1)-EGARCH(2,2) model. Adding
second-order conditional volatility terms yields four significant
persistence parameters o, , and one significant news impact parameter
A2 Thefour seriesthat have significant o, , terms also have significant
robust Wald statistics. Theresidual behaviorsof the second-order models
aresimilar to thosefrom thefirst-order models. Aswith the second-order
model, the Emu isthe only seriesthat does not pass the diagnostic tests.

B. Higher-order Termsin the Bivariate Series

The partial autocorrelations and serial cross correlations in table 1
suggest that coefficientson thelagged AR,_;. and ME,_; termsare likely
to beimportant, and that theimportance of thesetermsmay differ across
market pairs. An exhaustive search through the class of
VARMA(u,v)-EGARCH(p,q) models for arbitrary lags O through L
wouldinclude (L + 1)* distinct model specifications. For amaximumlag
of L = 3, thiswould include (3 + 1)* = 256 model estimations.

To reduce the search space, assume that the conditional mean and
conditional volatility structures are independent beyond one lag and
insignificant beyond three lags. This allows a separate search through
theset of VARMA (u,v)-EGARCH(1,1) and VARMA (1,1)- EGARCH(p,q)
models using amaximum lag of 3. This assumption reduces the search
spaceto 2( 3 + 1)? = 32 model specifications. Diagnostic statistics for
VARMA(0,0) and EGARCH(0,0) models are reported as a baseline.
Diagnostic statistics reject these unconditional models at a 1 percent
significance level in each case.

A search is conducted for the most parsimonious model with
insignificant probability values (p-values) on the diagnostic statistics,
imposing this criterion separately for the EGARCH and VARMA
searches. In particular, asearch is conducted for the most parsimonious
VARMA(1,1)-EGARCH(p,q) model according to the p-values of the
LM, andjoint bias statistics acrossthe various EGARCH specifications.
Another search is then conducted for the most parsimonious
VARMA(u,v)-EGARCH(1,1) model that minimizes the maximum
misspecification in the p-values of the Q,, and P,, statistics.

Wald statisticsare cal culated rel ativeto thefirst-order model ineach
variable. Model s with lags greater than (1,1) are compared to the (1,1)
model. Modelswith only ap or uterm are compared to a(1,0) baseline.
Modelswith only aqg or vtermare compared to (0,1). The Wald statistic
thus providesatest of whether higher-order termsarejointly significant
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relative to the comparable first-order (1,0), (0,1) or (1,1) model. Note
that asignificant Wald statistic in a second-order model will generally
result in a significant Wald statistic in similar third-order models
because all higher-order terms are compared to afirst-order base.

Table 4a reports LM, joint bias and Wald tests for the various
VARMA(1,1)-EGARCH(p,q) candidatemodel sand market pairs. Table
4b reports p-values for these diagnostic statistics. Some general
conclusionsare apparent fromthetables. First, diagnostic statisticstend
toward insignificance at higher lags in each series. Also, at least one
lagged volatility term is necessary to introduce persistence into
estimates of conditional volatility, as specifications from (0,0) to (0,3)
are poorly behaved acrossall four series. EGARCH(1,0), (2,0), or (3,0)
arenot considered, asthese model sreduceto aconstant-variancemodel! .

EGARCH(1,1) workswell for the U.K. and U.S. seriesin tables4a
and 4b, rendering the diagnostic testsinsignificant in these series. Wald
tests for joint significance in the higher-order terms for the U.K. and
U.S. series are significant, but the other diagnostic tests show that
EGARCH(1,1) is sufficient to accommodate the observed volatility
persistence in these series.?

Higher-order termsare necessary for Japan, wherethe LM, statistics
indicate ARCH(4) disturbances in the residuals of the EGARCH(1,1)
model. Lags of at least (1,3) or (2,2) are necessary to remove
significance in the LM, statistics. EGARCH(2,2) is adopted as the
parsimonious model for Japan, although (1,3) works as well. The
significant Wald statisticsfor Japan confirm that the higher-order terms
arejointly significant.

Tables4aand 4b al so suggest that ahigher-order EGARCH termcan
improve the fit of the Emu series. In particular, lags of (1,2) or (2,1) or
higher are necessary to remove significance in the LM, statistics.
Whether the second-order lag is on previous volatility or innovation
does not seem to matter. Note that higher-order 1ags cannot remove the
significance in the joint bias statistics for the Emu, athough
EGARCH(0,qg) models with g > 1 do improve the behavior of the
squared normalized residuals. Choice of the best model for this series
is difficult, as the Wald statistic is significant for the EGARCH(2,1)
specification, but not for the EGARCH(1,2) specification. The next
section assesseswhether EGARCH(2,1) canimproveon EGARCH(1,1)

2. Diagnostic p-valuesthat exceed 0.95 for the U.S. EGARCH(0,2) and EGARCH(2,2)
modelsmerely indicatethat residual autocorrel ationsare smaller than normal, and hencebenign.
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for the Emu series. This model is chosen rather than EGARCH(1,2)
because of its significant Wald statistic in table 4a.

Tables 5a and 5b report Q,,, P,, and Wald statistics for the various
VARMA(u,v) conditional mean models. The main conclusion here is
thaa VAR(1) and VMA(1l) are equaly capable of removing
intertemporal dependencies from the residuals. Indeed, diagnostic
statisticsand their p-valuesare nearly identical acrossall four seriesfor
these two specifications. Some conditional mean specification is
necessary, astheVARMA(0,0) specificationisapoor fit for each series.
A VMA (1) conditional mean specification is adopted following Burns,
Engle and Mezrich (1998), athough VAR(1) works aswell. The final,
parsmonious models have a VMA(1) conditional mean and a
conditional volatility specification of EGARCH(2,1) for the Emu,
EGARCH(2,2) for Japan, and EGARCH(1,1) for the United Kingdom
and the United States.

V. A Parsmonious Model of Bivariate Returns to
I nternational Stock Indices

Table 6 shows parameter estimates and diagnostic statistics for the
best-fitting VMA(1)-EGARCH(p,q) model for each series. With the
exception of Japan, the constant coefficients a,, and a,, are not
statistically significant, so these typically do not show atrend over the
sample period. The 6 terms also are not significant, so the level of
returnisnot related tovolatility except through the conditional volatility
specification. This is consistent with most previous estimates of
ARCH-in-mean effects.

These indices exhibit predominantly positive moving average terms
in table 6. The strongest effects are in the serial cross terms m,,; and
m, ;, which arepositiveand significant whenever oneindex closesbefore
another. For example, positiveand significant m,, , termsfor thedomestic
Emu (0.319), Japan (0.301), and U.K. (0.226) indicesreflect information
from world-ex-domestic markets (such asthe U.S.) that arrives after the
close of the domestic market and isincluded in the next day’s domestic
return. Similarly, the positive and significant cross effect m,, for the
U.S. series (0.319) arises because world-ex-U.S. returns include
information from the previous day’ s U.S. return. There are also positive
and significant moving averagetermsm,, for theworld-ex-Emu (0.101),
world-ex-Japan (0.135) and world-ex-U.K. (0.177) indices.
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The negative and significant moving average terms in the Emu
(-0.137) and U.K. (-0.088) appear at odds with the other moving
average terms. However, the sum m,,;, + m,, is positive for the Emu
(0.182), Japan (0.318), the U.K. (0.138), and the U.S. (0.085), so the
combined effect of serial and serial cross terms on domestic return is
positive for each domestic index.

Theindices exhibit strong volatility persistence. All eight w,,, and
o, termsonlagged log variances are positive and significant. The w,, ;
termsare closeto unity for thefirst-order terms of the U.K. (0.931) and
U.S. (0.917) indices. Similarly, the o, , terms are close to unity for the
first-order terms of the world-ex-U.K. (0.884) and world-ex-U.S.
(0.970) indices.

In the Emu, the effect is spread over two lags and often appearsin
the cross effects. Each of the first-order autoregressive volatility terms
W, ; and w, , are positive and significant, but the sums (w,,; + @) =
0.548 and (w,, , + m,,,) = 0.750 are not as close to unity asin the other
series. The world-ex-Emu index aso has a positive and significant
second-order w,,, term. Positive and significant cross effects w,,; =
0.744 and w,,, = 0.125 are not a surprise, as Emu markets close after
Japan and beforetheU.S. Second-order crosseffectsarenot significant.

Similarly, in Japan the SuUms (w,y; + @,,) = 0.969 and (w,y; + oy, ,)
= 0.952 are close to unity. The cross effects w,,; and w,,, have nearly
the same absol ute value but opposite sign, so the w,,; = —1.892 impact
of volatility in Japan on world-ex-Japan volatility at lag oneis canceled
out by the cross effect w,,, = —-1.839 at lag two. The impact of
world-ex-Japan volatility on Japanese volatility is negative and
significant at lagsone (w,, ; =—0.177) and two (o, , =—0.149), although
the magnitude of this cross effect is far less than the (w,,, + ®,2) =
0.969 magnitude of the serial effect within the domestic Japan index.

The y coefficients are negative and mostly significant, so the
positive A terms mean that conditional variances are larger when
previous innovations are negative than when they are positive. Thisis
a common finding in many asset prices, including international stock
indices(Kroner and Ng[1998]). The 4, and ,, , termsare positive, and
generally significant for the first-order models of the U.K. (0.130), and
the U.S. (0.105 and 0.139), so negative innovationsin each index have
a larger influence on conditional variance than positive innovations.
Thereis mixed evidence of asymmetric volatility traveling between the
indices in the first-order models of the Emu, U.K., and U.S., with a
single positive and significant cross effect A, for world-ex-Emu
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innovations on Emu returns.

For Japan’s EGARCH(2,2) model, positive and significant 4,, , and
Ay terms appear at lag two but not at lag one. In contrast to the U.K.
and U.S. series, three of thefour crosseffects(4,,, =0.089, 4,,; =0.101,
and 4,,, = 0.108) are positive and significant in the Japan series. The
other cross effect (4,,, = —0.053) is not significant. As in the other
series, conditional variances are larger when previous innovations are
negativethan when they arepositive. However, therelation travelsboth
within and acrossindices and continuesfor two lagsin the Japan series.

Overall, the diagnostics tests in table 6 indicate that an
VMA(1)-EGARCH(1,1) model captures most of the characteristics of
the UK. and U.S. series. Diagnostic statistics for the Emu’'s
VMA(1)-EGARCH(2,1) model and Japan's VMA(1)-EGARCH(2,2)
model are slightly more problematic. All of the test statistics should be
insignificant if a model is well specified. Ljung-Box Q,, statistics on
standardized VMA(1) residuals are insignificant for each index. Each
bivariate series passes Hosking' s portmanteau test P,, of the VMA(1)
conditional mean specification. Q3, tests on squared standardized
VMA(2) residuals and LM, tests for ARCH(L) disturbances revea no
problems, with the exception of the LM, test for Japan. The domestic
Emu index is the only one that fails the joint bias test. The
world-ex-domestic residuals and the bivariate residuals are unable to
pass the normality tests at a one percent significance level, suggesting
that an alternative error distribution might be worth exploring.

In summary, afirst-order vector autoregressive or moving average
process is sufficient to model conditional mean returns in these
international stock indices. Although first-order conditional volatility
terms are sufficient in two of the four series, second-order terms are
significant inthebivariate Emu and Japan series. Robust Wald statistics
on the second-order terms are significant relative to the EGARCH(1,1)
baseline, and residuals are poorly behaved without the second-order
terms. Finally, the univariate and the bivariate series generally have a
negative and significant asymmetric volatility term in the EGARCH
model, indicating a greater volatility response to negative innovations
than to positive innovations.

VI. Conclusions and Suggestions for Future Research

This article documents the stochastic properties of bivariate returns to
M SCI’ sdomestic and worl d-ex-domestic stock index pairsfor the Emu,
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Japan, the United Kingdom, and the United States. Bivariate returnsto
these series are important because they determine the diversification
gains to domestic investors from international equity investments. A
search is conducted for higher-order terms in the class of bivariate
VARMA(u,v)-EGARCH(p,q) models with a constant conditional
correlation and normally distributed errors.

Higher-order conditional volatility terms can be significant in these
data. A VMA(1)-EGARCH(1,1) model providesarelatively goodfit for
the U.K. and U.S. series. However, higher-order EGARCH terms and
robust Wald statistics are significant in the Emu and Japan. This is
similar to the proportion of significant higher-order terms in the
univariate series.

This study could be extended in many ways, asfindings are limited
by the assumptions and data. For example, it may be fruitful to
investigate alternative conditional correlation structures or error
distributions, as Bollerslev, Engle and Wooldridge (1988) and King,
Sentana and Wadhwani (1994) find that stock index correlations vary
over time with higher correlations in bear markets (Longin and Solnik
[2001]; Butler and Joaquin [2002]; Bae, Karolyi and Stulz [2003]).
Nonnormal error distributions might prove useful (Liesenfeld and Jung
[2000]), such asthe skewed generalized T (Theodossiou [1998]), stable
paretian (Mittnik, Paolellaand Rachev [2002]), exponential generalized
beta (Wang, et. al. [2001]), or generalized error distribution (Nelson
[1988]). Also, higher-order conditional volatility lags could be
investigated in bivariate series that involve higher transaction costs,
more price adjustment delays, or lower liquidity than the large markets
examined in this study.

Although the statistical significance of higher-order conditional
volatility terms is demonstrated in this study, their economic
significanceis not. The economic significance of amore precise model
of conditional volatility is a potentialy fruitful area of research andis
receiving increasing attention in the literature. For example, Fleming,
Kirby and Ostdiek (2001, 2003) assess whether an improved volatility
model can lead to better asset allocation decisions and estimate that a
first-order model of conditional volatility isworth 50 to 200 basis points
per year to arisk-averse investor relative to an unconditional volatility
model. Theeconomic significanceof higher-order conditional volatility
terms could be assessed in a similar manner.
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